

⊚ •

enjoy safety.

THE SAFETY BOOK

www.deltaplus.eu

<u>Corporate</u> information	2
Head protection	28
Hand protection	86
Body protection	136
Foot protection	212
Fall protection	248

enjoy safety.

Our activity

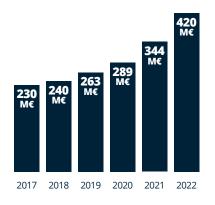
Our job is to protect women and men at work. To this effort, we design and manufacture complete personal and collective protection solutions for professionals worldwide.

We are present through **our 46** subsidiaries in 30 countries around the world and distribute our products in over **110** countries.

Our global offer covers the 5 main families of personal protective equipment and collective protection systems, and is available in more than **1,100** models, divided into more than **7,200** references.

Our products are designed around three key concepts: protection, comfort and design. Each of our solutions is challenged by our research and development experts. This allows us to offer more advanced and differentiating solutions.

And because we manufacture **85% of our products, through our 18 production facilities** around the world, we stand


behind the quality of our services. Combined with our global and integrated logistics organisation, we are able to offer a benchmark service in the industry.

All our **3,500 employees** are committed to the satisfaction of our customers, both distributors and users, who are supported by our specialist teams on a daily basis.

Delta Plus, is how we achieve 14% growth per year since 2016. This organic growth is complemented by external growth: 8 acquisitions have been finalised since 2019. Our vision and focus is on long-term sustainability.

It's the hallmark of our independence and the hallmark of your safety.

Distribution of sales by continent

- 46 subsidiaries in 30 countries18 production sites

- 2 Asian logistics platforms2 European logistics platforms

• 15 warehouses

Family history

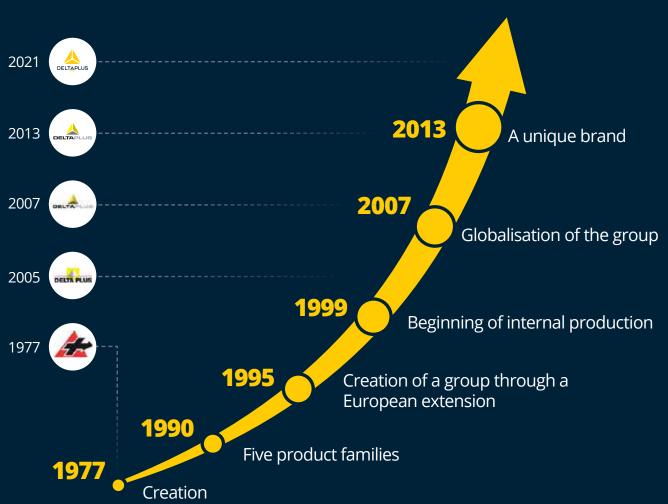
Jacques Benoit based Delta Plus in Apt, Provence, in 1977. At that time, the PPE sector still had a long way to go. He then began marketing rainwear, protective boots, and then work gloves.

In the 80s, Jacques Benoit created a rain gear, the 304, which would become a huge success.

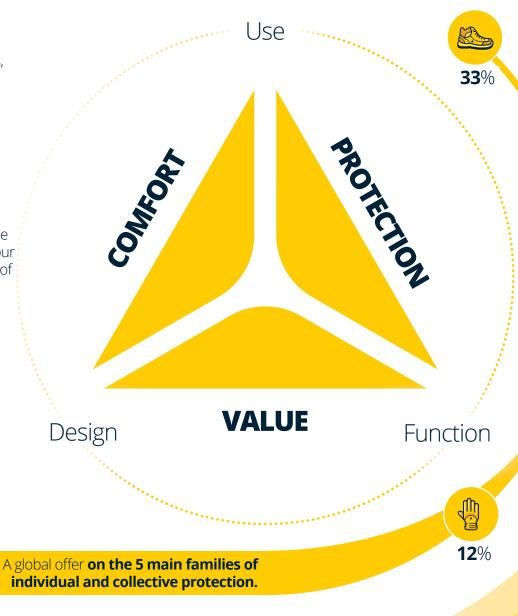
In the 2000s, Delta Plus started manufacturing.

In 2011, Jérôme Benoit, Jacques' eldest son, 28 years old and a graduate of HEC, succeeded him.

This success story has its roots in diversification and globalisation.


Thanks to its long-term orientation, the Delta Plus Group has gone from being a pioneer in the distribution of protective gloves and boots in 1977 to a global, multi-specialist, multiindustry designer and manufacturer worldwide 40 years later.

Stages of construction


Our **identity**

Our product offer is built on the triad of Protection, Comfort and Value.

Our offer includes systematic ecodesign in each of our specifications, in order to drive our development while limiting our impact on future generations.

At the same time, we have developed an eco-score, a simple rating system that can be adapted to all product families to measure the environmental impact of our products. We have also reduced the amount of packaging for some of our products, and systematise the use of recyclable materials.

With our global offer and services, Delta Plus positions itself to offer a protection solution for each business sector.

Agriculture Forest industry Fishing

Smart

We are the leading independent manufacturer with an increasingly sophisticated know-how in each of the PPE families.

Contructions

Right

We offer the best response to common hazards, with reliable, quality PPE for the greatest number of users, at fair value.

Public services Energy

23%

16%

16%

Community

Our team spirit is oriented towards our partners and based on transmission, coconstruction and support.

Manufacturing industry

Food industry

Multi-national

We are a multilingual brand that understands the needs of professionals in all countries, industries and company sizes.

Oil & gas (extraction) Petrochemicals Mining industry

Wellness

We offer a complete range of products, from head to toe, which responds to users' concerns in terms of well-being, image and environmental impact.

Transport Storage

Other sectors

Research and development

From design to standard, from environmental requirements to value creation.

Our international engineering team provides products that meet local standards and customer requirements. Project managers and business specialists cover all our subisdiaries and coordinate with our teams close to the production sites to ensure industrialisation and quality on a daily basis.

Environmental requirements are a major concern for all our products, whether it is the search for organic or recycled materials that meet our quality requirements, or the inclusion of the environmental footprint in the product specifications from the very outset of a project.

A worldwide networked organisation

- **45** dedicated persons
- **€5** M invested

ACQUATI

- · 20 projects launched
- 60 projects under development per year

A team of specialists in:	An ecosystem of external experts:	Internal laboratories for:	State-of-the-art resources for:
 Project management Textiles Plastics and chemical compounds Mechanics and simulation 	 Machine manufacturers Material suppliers Testing and prototyping laboratories Specialists in emerging technologies 	 Development tests Testing of standards 	 Management of technical data Calculations and simulations Prototyping (numerical control machines, 3D printing) Project planning and capitalisation

Manufacturing

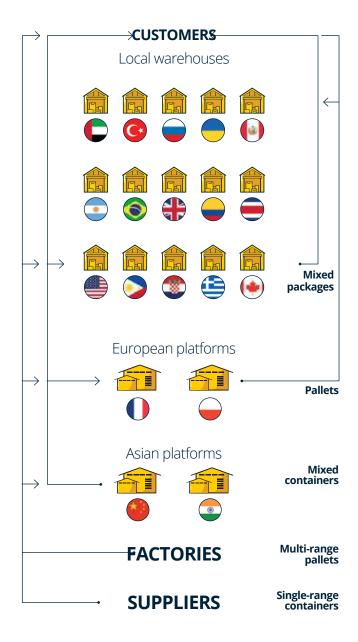
Our certifications

We operate in a regulated global market in many countries. Thus, we must manage requirements that may vary greatly between countries or regions.

The control of our production processes (internal and external) allows us to guarantee our customers quality products across the world.

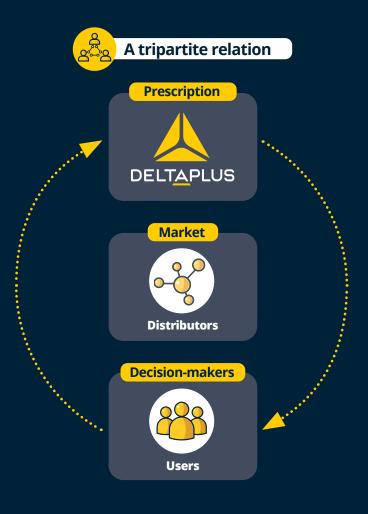
The common goal of our product managers and services is to offer reliable, sustainable, high-performance products in compliance with the regulations and/or standards of each territory where they are used.

PRESENTATION / DELTA PLUS GROUP


Our supply chain*

From forecasting to delivery, an integrated endto-end market process.

Our supply chain organisation is unique and structured around 5 major areas. An integrated model based on the group's sales forecasting, product cycle planning, supplier and production plant planning and capacity management, and warehouse and distribution operator efficiency.


Its management is centralised in France and is based on a rigorous structuring of processes and controls. It also relies on 4 consolidation logistics platforms to supply to our subsidiaries and customers around the world. Two of these platforms are located in Asia (China and India) and two in Europe (France and Poland). Our IT system, harmonised on each of the platforms, is based on an expert demand management system. It thus provides real-time information on stock levels, incoming and outgoing flows. Our ambition is to further integrate our supply chain with blockchain technology.

This organisation allows us to serve customers in all countries according to the most advantageous logistic scheme for them, guaranteeing the availability of quality products across our entire range of platforms and warehouses.

Recommendation

Our specialist teams undergo advanced training to provide the most appropriate personal protective equipment and/ or collective protection system solution for each working environment.

They are then in a position to propose risk analyses for each work situation identified, carry out workstation audits and guide you towards the best possible protection solution.

Positive impact

Our mission is to protect men and women at work by designing and manufacturing complete personal and collective protection solutions for professionals worldwide. And this mission of protection is broken down into 11 CSR commitments, based on 3 pillars.

P

People

So that our employees have the means to flourish in their work, in good health and in complete safety.

Safety at work

▶ 0% accidents at work

Training & skills development

 At least 1 training session every 6 years, for employees in France and for 30% of those assessed internationally

Employee health & protection

 100% coverage of our employees in three areas including health & disability throughout the group

Time & Attendance & Resource Management

Remain below the **3%** threshold in absenteeism over 6 consecutive months

Planet

To conduct our economic development while limiting its impact on future generations.

To develop our business in a safe, ethical and responsible way.

Waste management

▶ Exceed the **77%** target for waste recycling

Fair practice

▶ 100% of employees informed of anticorruption & ethical rules, and 100% trained for at-risk populations

Impact on climate change

Maintain our CO₂ ratio around 0.045 tonnes per k€ of logistics flow

Involvement of suppliers in our approach

▶ 90% compliance of selected suppliers & 8 CSR themes covered

Saving resources

Reduce our resource consumption ratios at all sites within the scope

Protection of internal intangible resources

► Guarantee the security and continuity of our trademark applications & sensitive IT data

Impact of product life cycle

Cross the **15%** threshold materials recycled in 2023

OUR SOLUTIONS

Workplace audit

Partnering to deliver a unique personal safety assesment at your workplace (PPE and collective protection systems).

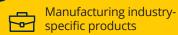
- △ Observation and analysis of work environment risks
- △ Protective solutions adapted to identified risks
- ▲ Test phase of recommended products
- △ Validation of the solutions by the user

The right product to match your risks

Technical days

Present Delta Plus products in your premises with dedicated teams.

- ▲ Events on your premises to present new products and standards
- △ Direct product tests



Customisation

Single-source product sourcing and customisation

Personalise to specific requests.

We can personalise products such as helmets and workwear. We also offer products outside the catalog sales plan.

- ▲ Pad printing
- △ Silk-screen printing*
- ▲ Embroidery*
- ▲ Manufacturing products specific to your needs, subject to conditions

*In collaboration with a partner.

Progress plan

Participate in composing progress plans.

- △ Participating in drawing progress plans
- △ Streamlining the range
- ▲ Suggesting substitute articles
- △ Optimising purchasing flows
- △ Controlling the overall cost of ownership of the solution

e.g. reduced ordering costs, EDI, paperless invoicing, dedicated stock, etc.

"Vending Machine"* Solution

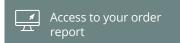
24/24 Products available 24/7, right at the workstation

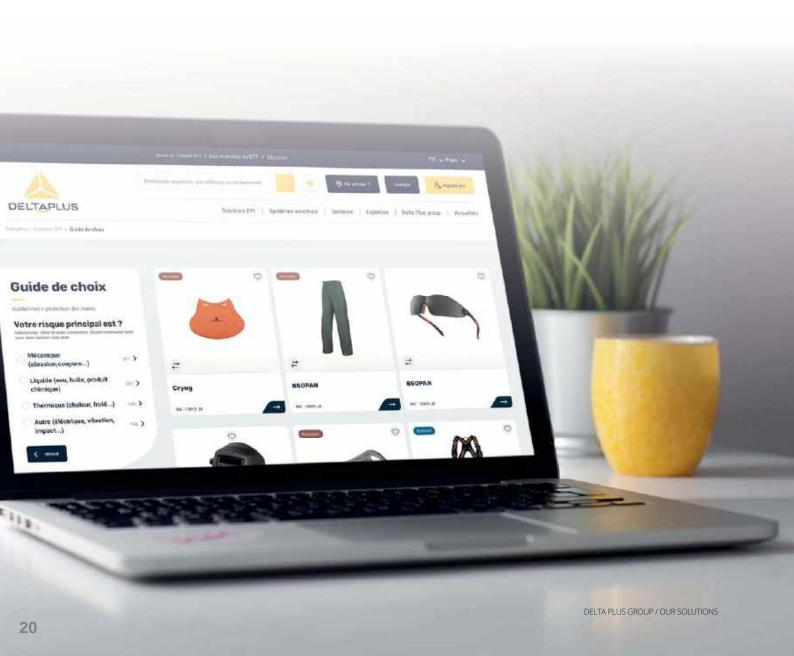
Time-saving and productivity gains for

The natural consumption of PPE reduced by nearly 20% in the first year.

Offering an automatic distribution solution for your PPE

- △ Defining requirements in collaboration with the end-user customer
- △ Offering a turnkey solution: products + equipment
- △ User training
- *In partnership with "vending machine" specialists.


Streamlining the online ordering experience.


- ▲ Placing orders
- ▲ Downloading invoices and delivery slips
- ▲ Downloading technical data sheets and declarations of conformity
- ▲ Retrieving order history
- ▲ Having the details of a sales contact
- ▲ Subscribing to our newsletter
- ▲ Visiting our download center to create your marketing materials

Website

Customised documents

Partnering in the production of Delta Plus product catalogs

Save time for your marketing teams

Generating your own catalog.

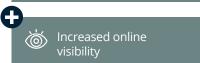
A simple, user-friendly platform that allows us to create your own catalog from the Delta Plus product database..

- ▲ Selecting the list of products to be included in the catalog from our database (photos, texts, and standards)
- ▲ Network generation
- ▲ Page layout using the templates and page backgrounds provided
- ▲ Insertion of publication pages (selection aids, technical information)
- ▲ Generation of low or high definition pdf for printing

NFC (Delta check) Application

Allowing fall arrest equipment to be checked annually.

- ▲ Our fall arrest products are equipped with an electronic chip indicating the product reference, serial number and manufacturing date.
- ▲ The NFC application allows tracking the product inspection status and receiving an email notification before each mandatory inspection.



On line store locator

Mapping the main distributors of Delta Plus products on our website.

▲ A store locator is a mapping solution , integrated into a website for store locations such as opening hours, address, or directions.

Inspection

Turnkey product

User safety

Verify and validate your equipment.

Our teams carry out the initial inspection, approval, and periodic inspection of your fall arrest equipment and systems.

- ▲ Lifelines, anchorage points & Personal Protective Equipment (PPE) (monitoring class III equipment)
- ▲ Monitored equipment collective protection
- ▲ Railings & means of access
- ▲ Individual protection
- ▲ Components of an inspection service: inspection of technical documents & marking
- ▲ Checking conformity and design of components
- ▲ Checking their working condition
- ▲ Checking related accessories identification for anomalies and areas of improvement.
- ▲ Fitting of an inspection collar submission of a detailed report

Maintenance & compliance

Replace equipment in the event of non-compliance.

Replace equipment in the event of non-compliance.

- ▲ Our teams inspect your equipment and fall arrest systems, and replace them if they are found to be non-compliant.
- ▲ Equipment supported collective protection railings & means of access individual protection

Installation

Offering ready-to-use fall arrest systems.

Turnkey product

User safety

Our integrated assembly teams are trained and qualified to work at heights. They can adapt to your on-site constraints and install your fall arrest systems anywhere in the territory.

- · Training & certification
- · ATEX
- · CACES PEMP
- · CATEC Confined spaces
- · 1st intervention team member
- Scaffolding
- Stacker
- · Gestures and postures
- · Electrical certification HOBO
- · HMechanical certification

- Slinger
- · Asbestos prevention consultant & operator
- · Rope work
- · SS4
- · Chemical risk N1
- · Safety at height
- · Road risk awareness
- · S.S.T.

Training & certification

Teaching and validating the right behaviours to intervene with complete safety (regulated training organisation).

As a regulated training organisation, we pass on our knowledge and experience, teaching the right techniques and practices to protect you from all the risks associated with a professional activity.

Our certifications:

GW **QUALIOPI**

We provide face-to-face training, practical training and e-learning options.

▲ Work at heights

- Wind turbine
- · Roofing
- Scaffolding

- Mast

Rope workPPE checks


Wearing a harness

▲ PPE - End-users

- Rescue systems
- · Rope work

- · Raising awareness about working at heights
- Protecting people at work
- PPE inspection

Improving employee

▲ Distributors

- · Sales techniques applied to fall protection
- · PPE recommendations: understanding the user environment
- · European standards: what's new?
- · Sales techniques applied to PPE
- Protecting people at work
- Fall protection

Eyewear protection

Safety glasses Safety goggles Welding Safety glasses Safety visors	32 46 49 51 53
Skull protection	
Safety helmets Helmets accessories - Marking Bump cap	56 62 64
Hearing protection	
Ear defenders Reusable earplugs Disposable earplugs	66 69 70
Respiratory protection	
Reusable respiratory Disposable respiratory	74 81

enjoy safety.

LES LUNETTES

Toutes nos lunettes polycarbonate filtrent 99,9% des UV A, B ou C (130 - 380 nm). Nos lunettes UV400 portent la filtration jusqu'à 400 nm.

			Indoor			-\\(\frac{1}{2}\)	-\\(\frac{1}{2}\)		-\\(\zeta\)-						
			-☆- Outdoor	Incolore	Jaune	Fumé	Mirror	Light Mirror	Polarisé	Gradient	Bleu Locker	T5	Lyviz	Anti-buée N	ACCESSOIRES FOURNIS
		*Existe en version blue	blocker et détectable										Lwiz	Anti-rayures K	
	UTILISATION INTENSIVE & EXTRÊME	ASO2	-	•		•								•	_
		BLOW 2	3	•			•	•							
		GO-SPECS TEC		•											
		PACAYA	100	•		•						•	•		
		RIMFIRE		•			•		•						■ Q
		VULCANO2 PLUS	N	•										•	
		FUJI2	7	•						•					_
		HELIUM2*		•		•					•				
LUNETTES BRANCHES	CONFORT & LÉGÈRETÉ	IRAYA	7	•	•	•									Ó
TES BR		MEIA		•	•	•									
LUNET		MILO		•		•									
		VULCANO	~	•		•									
	CLASSIQUE & MULTI-USAGE	BRAVA2		•	•	•	•	•							
		EGON		•	•	•		•							
		KILIMANDJARO		•		•									
		LIPARI2	N	•								•			
		PITON2		•											
	SURLUNETTES —	HEKLA2		•											
		PITON		•											
	PANORAMIQUES	GALERAS		•		•									
ASQUES	r Myor Milly Oct. 3	SAJAMA		•										•	
LUNETTES MASQUES	СОМРАСТ	MURIA1	100	•											
LUNE		RUIZ1		•											
		RUIZ1 ACETATE	-	•											

INNOVATION IN COMFORT

2-in-1 interchangeable arms

Innovative system that quickly transforms glasses with arms into goggles

Tilting arms

Technology to adapt the glasses inclination to the shape of the face for a better hold

Double injection arms (D-fit)

Co-injected TPE providing flexibility and solidity for optimal fit all day (reduces pressure points)

Adjustable arms length

Allows you to adjust the glasses closer to the face for better fit all day

Nose bridge (D-PAD)

Allows for a better fit for more comfort and stability

Detectable

Addition of metal insert for magnetic or X-ray detection Ideal for the food industry

CHOOSE THE RIGHT SHADE

YELLOW

Increases contrasts and gives a feeling of depth. Suitable for night driving.

SMOKE

Very good protection against the risk of natural glare with good color recognition.

MIRROR / LIGHT MIRROR

Reflect light from the surface. Particularly suitable for activities carried out in intense light.

BLUE BLOCKER

Lens filtering 65% of blue light.

POLARISED

High risk of dazzling and work on refl ective surfaces. Eliminates reverberation, improves color perception and provides optimal visual comfort.

GRADIENT

Darker gradient at the top of the lens becoming lighter towards the bottom.

CLEAR

Protects against mechanical hazards without glare.

LYVIZTM

LYVIZ treated lenses have a very strong resistance to scratches and greatly limit the formation of fogging on the internal and external face and this permanently.

The drops of water (or other liquid) bead on the glasses, do not stain

Fingerprints and other greasy marks do not mark.

Clear

PACAYA CLEAR LYVIZ

EN166

Protective goggles with removable foam insert, lens with oleo/ hydrophobic treatment for intensive use in all conditions Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 8 | Frame : Temples - Adjustable width - Nylon | Lateral protection | Weight: 52 g

- ⊕ Gasket brings an increased comfort and optimal sealing ⊕ Wide frame bringing a better fit for wider facial profile

Clear

PACAYA CLEAR STRAP LYVIZ

100 x

EN166

EN170 UV 2c - 1.2

 $C \in$

Protective goggles with removable foam insert, lens with oleo/ hydrophobic treatment for intensive use in all conditions Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 8 | Frame : Headband - Adjustable width - Nylon | Lateral protection | Weight: 52 g

⊕ Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

LYVIZ

Smoke

PACAYA SMOKE LYVIZ

100 x

EN166 1 FT / FT

 $C \in$ **EN172** UV 5 - 3.1

Protective goggles with removable foam insert, lens with oleo/ hydrophobic treatment for intensive use in all conditions Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 8 | Frame : Temples - Adjustable width - Nylon | Lateral protection | Weight : 52 g

 \oplus Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

LYVIZ

Clear

GO-SPECS TEC CLEAR

100 x

 $C \in$ EN170

UV 2c - 1.2

EN166 1 BT / BT

. Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 9.5 | Frame : Headband - TPE | Lateral protection |

Weight : 54 g

① Clip closure at the back with textile elastic for an Easy to setup and remove

EN166

PACAYA CLEAR

Clear-lens safety glasses with removable foam protection for intensive use

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 8 | Frame : Temples - Adjustable width - Nylon | Lateral protection | Weight: 52 g

Clear

Clear

Smoke

 \oplus Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

EN166

PACAYA CLEAR STRAP

Ultimately the best fitting Goggle-like spectacle, extra protective

eyewear with a very good sealing in dusty environments and air circulation for superior anti-fog performance Lens: Polycarbonate - Mono-bloc | Curved 8 | Frame: Adjustable width - Nylon | Lateral protection | Weight : 52 g

⊕ Gasket brings an increased comfort and optimal sealing

⊕ Wide frame bringing a better fit for wider facial profile

EN166 1 FT / FT

intensive use

PACAYA SMOKE

Smoked-lens safety glasses with removable foam protection for

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 8 | Frame : Temples - Adjustable width - Nylon | Lateral protection | Weight: 52 g

 \oplus Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

EN166 1 FT / FT

PACAYA T5

Shade 5

Shade 5 safety safety glasses, ideal for light welding work Lens: Polycarbonate - Mono-bloc | 8 | Frame: Temples -Adjustable width - Nylon | Lateral protection | Weight : 52 g

① Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

Clear

RIMFIRE CLEAR

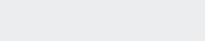
100 x

EN166

Ballistic impact certified safety glasses with a sporty look Lens : Polycarbonate - Two lens | Curved 9 | Frame : Polycarbonate | Weight : 28 g

 \oplus Sporty wraparound sunglass styling that workers will enjoy to wear

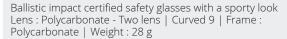
((

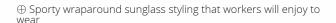

EN166 1 F / F

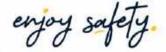
RIMFIRE MIRROR

Ballistic impact certified safety glasses with a sporty look Lens : Polycarbonate - Two lens | Curved 9 | Frame : Polycarbonate | Weight : 28 g

 \oplus Sporty wraparound sunglass styling that workers will enjoy to wear




EN166 1 F / F



Polarized

RIMFIRE POLARIZED

EN170 UV 2c - 1.2

EN166 1 FT / FT

x 100

BLOW2 CLEAR

Clear

2-in-1 goggles with foam protection for use with temples or strap Lens: Polycarbonate - Two lens | Curved 8 | Frame: Headband - Adjustable width, Removable temples - Polycarbonate | Weight: 38 g

⊕ Better fit than goggles for better comfort and worker acceptance: best compromise between safety glasses and goggles, more compact, lighter, more comfortable
 ⊕ High performance optical class for less visual fatigue

EN170 UV 2c - 1.7

EN166 1 FT / FT

x 100

x 100

BLOW2 LIGHT MIRROR

Mirror

2-in-1 goggles with foam protection for use with temples or strap Lens : Polycarbonate - Two lens | Curved 8 | Frame : Headband - Adjustable width, Removable temples - Polycarbonate | Weight : 38 g

 \oplus Better fit than goggles for better comfort and worker acceptance: best compromise between safety glasses and goggles, more compact, lighter, more comfortable \oplus High performance optical class for less visual fatigue

EN172

EN166 1 FT / FT

FT

Mirror

2-in-1 goggles with foam protection for use with temples or strap Lens : Polycarbonate - Two lens | Curved 8 | Frame : Headband - Adjustable width, Removable temples - Polycarbonate | Weight : 38 g

⊕ Better fit than goggles for better comfort and worker acceptance: best compromise between safety glasses and goggles, more compact, lighter, more comfortable
 ⊕ High performance optical class for less visual fatigue

Safety glasses

Clear

ASO2 CLEAR

EN166 FT KN / FT

Clear-lens safety glasses with adjustable nose bridge and bimaterial arms for comfort

Lens: Polycarbonate - Two lens - Fog/Anti-scratch (KN) | Curved 9.5 | Frame : Temples - Polycarbonate - TPR | Weight : 28 g

⊕ Anti-scratch coating Increasing lifespan

EN166

ASO2 SMOKE

Very comfortable smoked-lens safety glasses with adjustable nose bridge and bi-material arms

Lens : Polycarbonate - Two lens - Fog/Anti-scratch (KN) | Curved 9.5 | Frame : Temples - Polycarbonate - TPR | Weight : 28 g

⊕ Anti-scratch coating Increasing lifespan

EN166 1 FT / FT

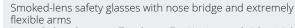
Clear

FUJI2 CLEAR

Clear-lens safety glasses with nose bridge and extremely flexible

Lens: Polycarbonate - Two lens | Curved 8 | Frame: Temples -Polycarbonate | Weight: 37 g

 \oplus Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)


FUJI2 GRADIENT

EN166 1 FT / FT

Lens: Polycarbonate - Two lens - Fog/Anti-scratch (classic) | Curved 8 | Frame: Temples - Polycarbonate | Weight: 37 g

① Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

EN166

VULCANO2 PLUS CLEAR

Very flexible, clear-lens safety glasses adaptable to all body shapes, with certified anti-fog and anti-scratch lenses Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (KN) | Curved | Frame : Temples - Adjustable witch and height - Nylon | Lateral protection | Weight: 37 g

⊕ Temple length and ratchet angle adjustments for a perfect fit

 $C \in$

EN166

VULCANO2 CLEAR

Clear

Clear

Very flexible, clear-lens safety glasses adaptable to all body shapes

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved | Frame : Temples - Adjustable witch and height - Nylon | Lateral protection | Weight: 37 g

① Temple length and ratchet angle adjustments for a perfect fit

 $C \in$

EN166 1 FT / FT

ANSI Z87.1 Z87+ U6 L3

VULCANO2 SMOKE

Smoke

Very flexible, smoked-lens safety glasses adaptable to all morphologies

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) Curved | Frame: Temples - Adjustable witch and height - Nylon | Lateral protection | Weight: 37 g

 $\ensuremath{\oplus}$ Temple length and ratchet angle adjustments for a perfect fit

EN166

FUEGO

Clear

Clear-lens safety glasses for use on a safety helmet Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) Curved | Frame : Temples - Adjustable width - Nylon | Weight : 34

Blue

HELIUM 2 DETECTABLE

EN166

Ultra light blue safety glasses with metallic frames, ideal for the food industry

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 9.5 | Frame: Temples - Polycarbonate | Weight: 17 g

⊕ Metallically charged blue frame visually detectable by X-ray and magnetismSuitable for the food industry

⊕ Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

Brown

HELIUM 2 BLUE BLOCKER

100 x **EN170** UV 2c - 1.4

EN166

Ultra light brown safety glasses with lenses that filter blue light Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 9.5 | Frame: Temples - Polycarbonate | Weight: 17 g

⊕ Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

⊕ Copper Blue Blocker lens reduces glare and increases contrast

Clear

HELIUM 2 CLEAR

 $C \in$ EN170 **EN166** 1 FT / FT

ANSI-ISEA Z87.1

Ultra-lightweight clear-lens safety glasses with flexible arms Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 9.5 | Frame: Temples - Polycarbonate | Weight: 17 g

 \oplus Spherical visor for an extra large field of vision

① Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

Smoke

HELIUM 2 SMOKE

100 x

EN166 1 FT / FT

ANSI-ISEA Z87.1 Z87+ U6 L2.5

⊕ Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

EN166 1 FT / FT

IRAYA CLEAR

Clear

Clear-lens safety glasses in a sleek, sporty design Lens : Polycarbonate - Two lens - Fog/Anti-scratch (classic) | Curved 9.5 | Frame : Temples - Polycarbonate | Weight : 61 g

 \oplus Extra soft nose bridge for an optimised comfort and perfect fit for all body types

EN166

IRAYA SMOKE

Smoke

Smoked-lens safety glasses in a sleek, sporty design Lens : Polycarbonate - Two lens - Fog/Anti-scratch (classic) | Curved 9.5 | Frame : Temples - Polycarbonate | Weight : 61 g

 \oplus Extra soft nose bridge for an optimised comfort and perfect fit for all body types

EN166 1 FT / FT

IRAYA YELLOW

Yellow

Yellow safety glasses in a sleek, sporty design, ideal for night

driving Lens: Polycarbonate - Two lens - Fog/Anti-scratch (classic) | Curved 9.5 | Frame: Temples - Polycarbonate | Weight: 61 g

 \oplus Extra soft nose bridge for an optimised comfort and perfect fit for all body types

Clear

MEIA CLEAR

EN166 1 FT / F1

Lightweight, one-piece, clear-lens safety glasses with non-slip tips Lens : Polycarbonate - Mono-bloc | Curved 9.5 | Frame : Temples - Polycarbonate | Weight : 33 g

 \oplus Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

100 x

EN172

EN166 1 FT / FT

MEIA SMOKE

Lightweight, one-piece, smoked-lens safety glasses with non-slip tips $% \left(1\right) =\left(1\right) +\left(1$

Lens : Polycarbonate - Mono-bloc | Curved 9.5 | Frame : Temples - Polycarbonate | Weight : 33 g

 \oplus Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

Yellow

MEIA YELLOW

EN170 UV 2c - 1.2 **EN166** 1 FT / FT

Very light, one-piece yellow safety glasses with non-slip tips, ideal for night driving

Lens : Polycarbonate - Mono-bloc | Curved 9.5 | Frame : Temples - Polycarbonate | Weight : 33 g

 \oplus Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

EN166

Clear-lens dielectric safety glasses Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 9 | Frame : Temples - Polycarbonate | Weight : 18 g

Clear

⊕ Extra flat temples for optimal comfort and less pressure

EN166

MILO SMOKE

Smoked-lens dielectric safety glasses Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 9 | Frame : Temples - Polycarbonate | Weight : 18 g

① Extra flat temples for optimal comfort and less pressure

EN166 1 FT / FT

LIPARI2 CLEAR

Clear

Shade 5

Smoke

Extra flexible, clear-lens safety glasses with side protection Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 7 | Frame : Temples - Adjustable witdh and height - Nylon | Lateral protection | Weight : 61 g

 $\ensuremath{\oplus}$ Temple length and ratchet angle adjustments for a perfect fit

EN166 1 FT / FT

LIPARI2 T5

Extra flexible, shade 5 safety glasses with side protection for light

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) Curved 7 | Frame : Temples - Adjustable witdh and height - Nylon | Lateral protection | Weight : 61 g

① Temple length and ratchet angle adjustments for a perfect fit

Safety glasses

Clear

EGON CLEAR

EN166

One-piece, clear-lens safety glasses with wide field of protection and side protection

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved | Frame : Temples - Nylon - Polycarbonate | Weight : 34 g

⊕ Wide frame bringing a better fit for wider facial profile Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

Yellow

EGON YELLOW

EN166

One-piece, yellow safety glasses with wide field of protection and side protection, ideal for night driving

Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved | Frame: Temples - Nylon - Polycarbonate | Weight: 34 g

 \oplus Wide frame bringing a better fit for wider facial profile Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

Smoke

EGON SMOKE

EN172 UV 5 - 3.1

EN166 1 FT / FT

One-piece, smoked-lens safety glasses with wide field of protection and side protection

Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved | Frame : Temples - Nylon - Polycarbonate | Weight : 34 g

 \oplus Wide frame bringing a better fit for wider facial profile ⊕ Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

Mirror

EGON LIGHT MIRROR

EN166

⊕ Wide frame bringing a better fit for wider facial profile ⊕ Anti-slip ends for an increased comfort and very good hold on the head (or on a helmet)

EN166 1 FT / FT

BRAVA2 CLEAR AB

Clear-lens safety glasses with side protection and anti-fog coating Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 9.5 | Frame: Temples - Polycarbonate | Lateral protection

Clear

Clear

Yellow

Smoke

⊕ Lightweight and robust, resists bending and twisting

EN166 1 FT / FT

BRAVA2 CLEAR

Clear-lens safety glasses with side protection Lens : Polycarbonate - Mono-bloc | Curved 9.5 | Frame : Temples - Polycarbonate | Lateral protection | Weight : 25 g

① Lightweight and robust, resists bending and twisting

EN166 1 FT / FT

BRAVA2 YELLOW

Yellow safety glasses with side protection, ideal for night driving Lens: Polycarbonate - Mono-bloc | Curved 9.5 | Frame: Temples - Polycarbonate | Lateral protection | Weight: 25 g

 \oplus Lightweight and robust, resists bending and twisting

EN166

BRAVA2 SMOKE

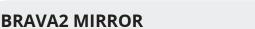
Smoke safety glasses with side protection Lens : Polycarbonate - Mono-bloc | Curved 9.5 | Frame : Temples - Polycarbonate | Lateral protection | Weight : 25 g

⊕ Lightweight and robust, resists bending and twisting

Mirror

BRAVA2 LIGHT MIRROR

EN166



Mirror-finish safety glasses with side protection, for indoor/ $\mbox{outdoor}\mbox{ use}$

Lens : Polycarbonate - Mono-bloc | Curved 9.5 | Frame : Temples - Polycarbonate | Lateral protection | Weight : 25 g

⊕ Lightweight and robust, resists bending and twisting

CE

EN166 1 FT / FT

ANSI-ISEA 287.1 287+ U6

Mirror-finish safety glasses with side protection, for indoor/outdoor use

Lens : Polycarbonate - Mono-bloc | Curved 9.5 | Frame : Temples - Polycarbonate | Lateral protection | Weight : 25 g

 \oplus Lightweight and robust, resists bending and twisting

Clear

Mirror

PITON 2 CLEAR

EN170 UV 2c - 1.2

EN166 1 FT / F

Clear-lens, one-piece safety glasses with side shields, perfect for short term applications

Lens : Polycarbonate - Mono-bloc | Curved 6 | Frame : Temples - Polycarbonate | Lateral protection | Weight : 54 g

- \oplus Extra flat temples for optimal comfort wiht Ear muffs
- ⊕ Molded nose piece for an economic solution

PITON CLEAR ð

EN166

Clear-lens, one-piece safety glasses with side shields in a sporty design, perfect for short-term applications

Lens : Polycarbonate - Mono-bloc | Curved | Frame : Temples - Polycarbonate | Lateral protection | Weight : 62 g

⊕ Wide frame bringing a better fit for wider facial profile

EN166

KILIMANDJARO CLEAR AB

Clear-lens, one-piece safety glasses with side shields and anti-fog

coating, ideal for laboratory applications Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 4 | Frame : Temples - Adjustable height - Nylon | Lateral protection | Weight: 71 g

Clear

Clear

Smoke

Clear

⊕ Adjustable length arms for less pressure

 $C \in$

EN166

KILIMANDJARO CLEAR

Clear-lens one-piece safety glasses with side shields, ideal for

laboratory applications
Lens: Polycarbonate - Mono-bloc | Curved 4 | Frame: Temples Adjustable height - Nylon | Lateral protection | Weight: 71 g

⊕ Adjustable length arms for less pressure

 $C \in$

EN166 1 FT / FT

KILIMANDJARO SMOKE

Smoked-lens, one-piece safety glasses with side shields, ideal for laboratory applications

Lens: Polycarbonate - Mono-bloc | Curved 4 | Frame: Temples -Adjustable height - Nylon | Lateral protection | Weight : 71 g

 \oplus Adjustable length arms for less pressure

EN166

Clear-lens over-glasses for wearing prescription glasses Lens: Polycarbonate - Mono-bloc | Curved | Frame: Temples -Polycarbonate | Lateral protection | Weight : 37 g

① Classic wide overspec for an economic solution for visitors or ponctual use

Safety goggles

Clear

SAJAMA

EN166 1 BT KN / 34 BT

ANSI-ISEA 287.1 Z87+ U6 D3 D4

Clear-lens, anti-fog and anti-scratch safety goggles Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (KN) | Curved 10 | Frame: Headband - TPE | Eyebrow protection |

 \oplus Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

⊕ Fork-type headband provides low and consistent pressure on the wearer's head without sacrificing comfort.

Clear

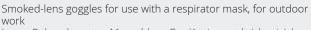
GALERAS CLEAR

EN166 1 BT / 34 BT

Clear-lens goggles for use with a respirator mask Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 10 | Frame : Headband - Nylon - PVC | Weight : 104 g

⊕ Contemporary wrap-around bifocal design offers a close fit and comfortable protection.

Smoke


GALERAS SMOKE

EN166 1 BT / 34 BT

Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 10 | Frame : Headband - Nylon - PVC | Weight : 104 g

 ϵ

EN166 1 FT / 3 FT

RUIZ 1 ACETATE

Clear

Clear-lens safety goggles resistant to chemical splashes Lens : Polycarbonate - Acetate - Mono-bloc | Straight | Frame : Headband - PVC | Eyebrow protection - Vented | Weight : 86 g

 \oplus Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

EN166 1 B / 3 B

RUIZ 1

Clear

Clear-lens safety goggles with indirect ventilation for short term

Lens : Polycarbonate - Mono-bloc | Straight | Frame : Headband - PVC | Eyebrow protection - Vented | Weight : 86 g

 \oplus Extra soft nose bridge for an optimised comfort and perfect fit for all body types

1 B / B

MURIA 1

Clear

Clear-lens safety goggles with direct ventilation for short term use Lens : Polycarbonate - Mono-bloc | Straight | Frame : Headband - PVC | Eyebrow protection - Vented | Weight : 60 g

 \oplus Extra soft nose bridge for an optimised comfort and perfect fit for all body types

FILM GOGGLE

Clear

Box of 10 sets of protective films for goggle lenses. Each set consists of 3 superimposed layers to be used one after the other. Weight: $56\,\mathrm{g}$

WELDING

BARRIER2 EN166 / EN175 / EN379

TOBA3 T5 EN166 / EN169 / EN175

SCREEN EN166 / EN175 / EN379

LIPARI2 T5 EN166 / EN169

CASOUD2HE EN166 / EN169 / EN175

CASOUD3 EN166 /

EN169 / EN175

PACAYA T5 EN166 / EN169

WELDING	МММА	MIG	MAG	TIG	TORCH	PLASMA	LASER
Process		Electric arc + Electrode		Electric arc + Electrode Tunsten	Torch flame	Electric arc + Electrode	Laser ray
Gas supply	No	Inert protective gas (Argon or Helium)	Active protective gas (Argon/CO ₂ or Argon/ Oxygen)	Neutral gas (Argon)	Fuel gas (acetylene, pro- pane, butane or methane) + Combustion gas (oxygen - hydrogen or natural gas)	Argon (principal) + Hydrogen or Helium (annular)	No
<u></u>	3 500°C to 7 000°C			3 500°C	3 150°C	15 000°C to 25 000°C	
Metal supply	Yes (melting electrode)	Yes (metal coil)		Yes (Filler metal rod)	Yes	No	No
Example of jobs using these process	Craftsmen, locksmiths, me- tal workers, coachbuilders	Steel structure, boilermaking, metalwork / ironworks, railway and naval construction		Boilermaking, metalwork / ironworks	Plumbers, heating engineers, cold storage, locksmiths	Aeronautics, light and pharmaceutical Industry	Light and pharmaceutical Industry
Materials	Steel, stainless steel, cast iron, aluminum	Pure steel or weakly alloyed*	Stainless steel and copper alloy*	All type of metals (except light aluminum alloy*)	Copper, tin, brass, alumi- num, zinc	Steels, stainless steel, aluminum and alloy*	Metals and plastics
Thickness	2 mm to 10 mm	0,5 mm to 10 mm		0,3 mm to 6 mm	Less than 2 mm	Micro plasma : 0,01 to 1 mm Plasma : 1 to 3 mm Unblocking spray plasma: 3 mm to 8 mm	2 mm to 8 mm
Features	Economical and good quality welding	High speed, regular and good quality welding bead		"Clean" welding, very high quality, slow process	Easy to settle, stand alone device. Easy to learn but average aspect.	Quality welding (fine and precise). Possibility of automatic process but rather slow. + Possibility to cut pieces	"Clean" and very high qua lity but expensive welding process + Cut of pieces in large series

^{*} An alloy is the combination of a metallic element with one or several other chemical elements by melting, with the aim of modifying the mechanical properties of the basic metal. Examples of known alloys:

- Cast iron: iron + carbon (between 2,1 and 6,7 % in carbon mass)

- Steel: iron + carbon (less than 2,1 % in carbon mass)

- Brass: copper + zinc / Bronze: copper + tin

 ϵ

EN166 1 B

EN175 B EN 379 1/1/1/2 4/5-13

BARRIER 2

Welding mask with adjustable tinting suitable for all welding jobs Lens : Polycarbonate - Mono-bloc | Straight | Weight : 500 g

 $C \in$

EN166 1 B

BARRIER PLATE 2

Pack of 5 external spare screens for BARRIER 2 in polycarbonate.

Lens : Polycarbonate - Mono-bloc | Straight | Weight : 38 g

 ϵ

EN166 1 F

EN175 F **EN 379** 1/1/1/2 4/9

ANSI Z87.1 Z87 W4/9-13

SCREEN

Welding mask suitable for electric arc and Tig & Mig welding applications

Lens : Polycarbonate - Mono-bloc | Straight | Weight : 474 g

 ϵ

EN166

SCREEN PLATE

Pack of 5 external spare screens for SCREEN in polycarbonate. Lens: Polycarbonate - Mono-bloc | Straight | Weight: 474 g

BASWELD

Pack of 10 straps for BARRIER 2 and SCREEN welding helmets Weight : 5 $\ensuremath{\text{g}}$

Black

Black

CASOUD2HE

 $C \in$ **EN169** UV 11 **EN166** 1 F / S

EN175

Welding mask for applications that require shade 11 protection, for use on a safety helmet Lens: Polycarbonate - Mono-bloc | Straight | Frame: Polypropylene | Weight: 304 g

CASOUD 3

 $C \in$

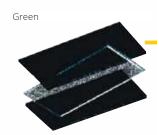

EN166 1 F / F

EN169 UV 11

EN175

Welding mask with headband, for applications that requires shade 11 protection

Lens : Polycarbonate - Mono-bloc | Straight | Weight : 415 g


FILTER-IN

EN166 1 F / F

Pack of 5 clear polycarbonate screens, 108 x 51 mm. Fits CASOUD3 welding helmet and CASOUD2HE welding mask. Thickness: 1.8 mm

Lens: Polycarbonate | Weight: 95 g

 $C \in$

EN166

EN169 UV 11

FILTER 11

Pack of 5 mineral glass screens, shade 11, 108x51 mm. Fits CASOUD3 welding helmet and CASOUD2HE welding mask. Thickness: 3 mm

Lens: Mineral | Weight: 223 g

EN169 UV 5

EN166 1 FT / FT

ANSI Z87.1 Z87+

PACAYA T5

Shade 5

Shade 5 safety safety glasses, ideal for light welding work Lens : Polycarbonate - Mono-bloc | 8 | Frame : Temples -Adjustable width - Nylon | Lateral protection | Weight : 52 g

 \oplus Ample indirect venting on the top and bottom of the lens to reduce moisutre infultration and fogging

 ϵ

EN166 1 FT / FT

ANSI **Z87.1** Z87+

LIPARI2 T5

Shade 5

Extra flexible, shade 5 safety glasses with side protection for light welding work

Lens: Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved 7 | Frame: Temples - Adjustable witdh and height - Nylon | Lateral protection | Weight: 61 g

 $\ensuremath{\oplus}$ Temple length and ratchet angle adjustments for a perfect fit

EN169 UV 5

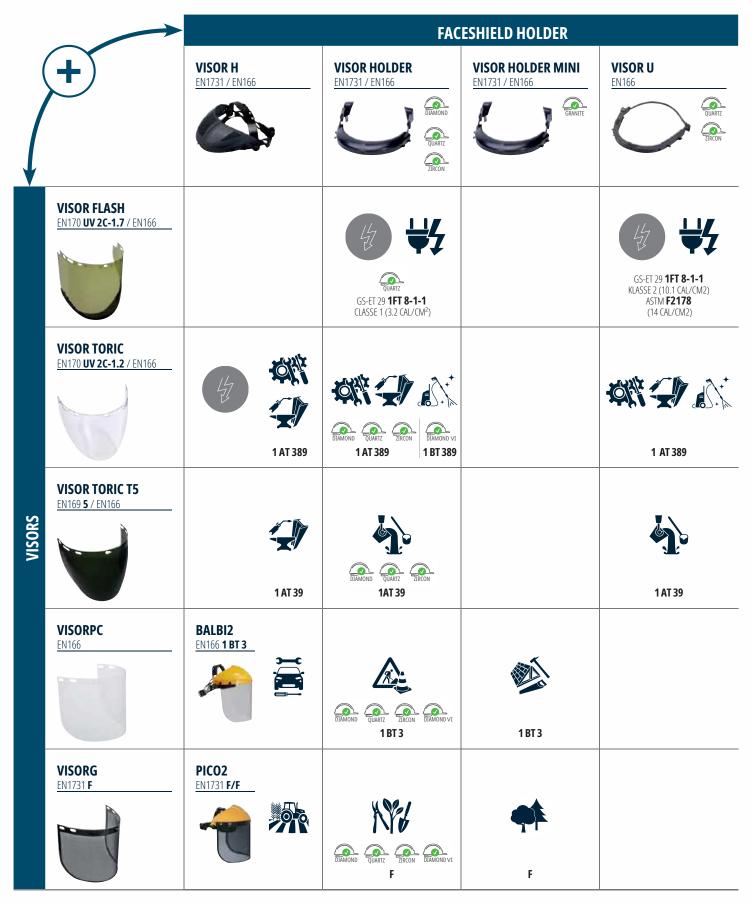
EN166 1 F / FT

EN175

x 60

TOBA 3 T5

Red


Welding goggles with clear lens/shade 5 retractable lenses, perfect for occasional welding

Lens : Polycarbonate - Two lens | Straight | Frame : Headband - Nylon | Eyebrow protection | Weight : 157 g

 \oplus Fork-type headband provides low and consistent pressure on the wearer's head without sacrificing comfort.

EN166 1 FT 8

VISOR FLASH 2

Arc protection visor, 14cal/cm² ASTM, curved chin protection to minimise discomfort to the user's movements. Lens: Polycarbonate - Fog/Anti-scratch (classic) | Weight: 237 g

EN166 1 AT 89

EN170

VISOR TORIC CLEAR

Arc protection visor, adaptable to our different visor holders Lens: Polycarbonate | Weight: 178 g

EN166 1 AT 9

ANSI-ISEA Z87.1 Z87+ U6 W5 D3

VISOR TORIC T5

Shade 5 visor for protection against electric arcs, adaptable to our different visor holders

Lens : Polycarbonate | Weight : 178 g

VISOR T-GUARD

Chin guard to add to the Visor Toric visor to increase its level of protection

Frame : Polycarbonate | Weight : 80 g

 $C \in$

EN166

BALBI 2

Visor holder, equipped with a headband adjustable with by a Rotor system and polycarbonate visor This kit contains: 1x VISORH, 1x VISORPC

 ϵ

EN1731

PICO₂

Visor holder, equipped with an adjustable headband with Rotor system and a mesh visor This kit contains: 1x VISORH, 1x VISORG

VISORPC

EN166

Black

VISORG

EN1731

Gauze visor, suitable for gardening or arborist work, adaptable to all our visor holders

Flat, transparent polycarbonate visor adaptable to all our visor

Lens: Polycarbonate | Weight: 100 g

Weight: 204 g

VISOR-H

EN166 BAT / 389

Visor holder with adjustable headband and Rotor clamping system Weight : 180 g

Black

VISOR HOLDER

EN166 BT / 389 AT

Visor holder suitable for Zircon, Quartz and Diamond helmets Weight: 86 g

ANSI-ISEA Z87.1 Z87+D3

Black

VISOR-HOLD MINI

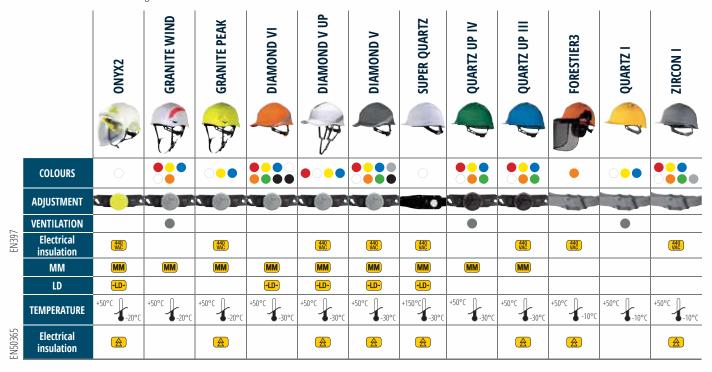
Visor holder suitable for Granite helmets Frame : Polypropylene | Weight : 74 g

EN166 BT / 3

Black

VISOR-U

EN166


Visor holders adaptable to all types of construction helmets Frame : PVC \mid Weight : 86 g

HELMET

All our helmets have standard fitting for all accessories.

CUSTOMISE YOUR SAFETY HELMETS!

- The logo sent must be in vectorised format (.eps, .ai, or .pdf) and must not have different colour background of the chosen helmet.
- For logos in colours, please indicate the pantone reference for each colour.
- Warning: the colours of the logos can be slighty changed according to the colour of helmets. To have the same colour as your logo, we recommend that you choose white helmets

YOURLOGO

- It is impossible to do gradient colours in pad printing.
- Minimum of order: 40 pieces per colour for all orders in Europe.
- Maximum number of colours: 4
- The space to put the logo may not exceed dimensions shown on the table below:

BUMP CAP

| COLOURS | COLO

	ZIRCON	QUARTZ - SUPER QUARTZ	GRANITE	DIAMOND	ONYX
Front	70 x 40 mm	70 x 40 mm	70 x 40 mm	70 x 40 mm	
Back	60 x 20 mm	60 x 35 mm		60 x 20 mm	60 x 35 mm
Sides	40 x 20 mm	60 x 20 mm	Printing zone Maximum logo size	70 x 40 mm	

6.2 cm

Safety helmets

Fluorescent yellow

ONYX2

EN 397 MM LD -20°C +50°C 440VAC

against electric arcs and molten metal splashes Shell material : ABS - Non vented | Head size : 53-64 cm | Wheel ratchet - Rotor adjustement | Textile harness : PA (Polyamide) - 6 points | Jugular material : Polymer - 4 points | Neckband material: Polyester | No chin | Weight: 775 g

Double-shell safety helmet, equipped with a visor, for protection

- ⊕ ABS for lighter weight and greater comfort
- Balanced gravity center to prevent any musculoskeletal disorders for a prolonged use and a reduction of musculoskeletal disorders (MSDs)
- ① Replaceable headband for a better hygiene

Black

HARNESS O 2

ONYX2 spare harness, textile lining, new headband and extended rear support for greater comfort and balance when

Rotor adjustement | Weight: 120 g

⊕ Replaceable suspension for a better hygiene

Clear

VISONYXPR

EN166 1 SAT 89KN / 3

- \oplus Premium KN coating for a better resistance if cleaned with soap and water
- ① Wraparound lens provides extra wide unobstructed field of vision

Yellow

 ϵ

EN 397 MM -20°C +50°C

GRANITE WIND

Safety helmet for work at height, ventilated, made from ABS,

equipped with a 3-point chinstrap
Shell material: ABS - vented | Head size: 53-63 cm | Wheel
ratchet - Rotor adjustement | Textile harness: PA (Polyamide) - 8 points | Jugular material : Textile - 3 points | Neckband material : EVA foam | Weight : 368 g

⊕ Visorless to improve upward vision

 $C \in$

EN 397 MM -20°C +50°C 440VAC

GRANITE PEAK

Safety helmet for work at height with electrical insulation, made from ABS, equipped with a 3-point chinstrap Shell material: ABS - Non vented | Head size: 53-63 cm | Wheel ratchet - Rotor adjustment | Textile harness: PA (Polyamide) - 8

points | Jugular material : Textile - 3 points | Neckband material : Polyester | No chin | Weight: 350 g

Yellow

 \oplus Visorless to improve upward vision

Safety helmets

Black Carbone

DIAMOND VI WIND

CE

EN 397 MM LD -30°C +50°C

Safety helmet featuring a sporty design for upright and inverted wear for maximum versatility
Shell material: ABS - vented | Head size: 53-64 cm | Wheel ratchet - Rotor adjustment | Textile harness: PA (Polyamide) - 8 points | Jugular material : 4 points | Neckband material : Foam | Weight : 374 g

- \oplus Vented helmet for breathability that allows comfortable extended wearing
- Reverse wearing for a maximum field of vision without visor

HARNESS VI

Diamond VI helmet replacement harness, textile headband, terry cloth, and D Rotor adjustment system Rotor adjustment | Weight : 176 g

 \oplus Replaceable suspension for a better hygiene

Yellow

EN 397 MM LD -30°C +50°C 440VAC

Safety helmet featuring a sporty design for upright and inverted

wear for maximum versatility Shell material : ABS - Non vented | Head size : 53-63 cm | Wheel ratchet - Rotor adjustment | Textile harness : PA (Polyamide) - 8 points | Jugular material : 4 points | Neckband material : Textiles -EVA foam | Weight: 404 g

① Reverse wearing for a maximum field of vision without visor

EN 397 MM LD -30°C +50°C 440VAC

x 20

DIAMOND V UP

Safety helmet featuring a versatile sporty design for both upright and inverted wear, equipped with a chinstrap for better fit Shell material: ABS - Non vented | Head size: 53-64 cm | Wheel ratchet - Rotor adjustment | Textile harness: PA (Polyamide) - 8 points | Jugular material : Textile - 4 points | Neckband material : Polyester | No chin | Weight : 424 g

① Reverse wearing for a maximum field of vision without visor

HARNESS V

Diamond V helmet replacement harness, terry cloth headband, and D Rotor adjustment system Rotor adjustment | Weight: 78 g

Safety helmets

Blue

QUARTZ UP IV

40 x ← C €

EN 397 MM -30°C +50°C

Ventilated safety helmet with short visor equipped with rotor

system for easy adjustment
Shell material: Polypropylene - vented | Head size: 53-63 cm | Wheel ratchet - Rotor adjustment | Textile harness : PA (Polyamide) - 8 points | Jugular material : 4 points | Neckband material : Polyester | Weight : 350 g

① Vented helmet for breathability that allows comfortable extended wearing

White

QUARTZ UP III

EN 397 MM -30°C +50°C 440VAC

Safety helmet with short visor equipped with rotor system for easy adjustment

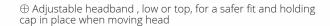
Shell material: Polypropylene - Non vented | Head size: 53-63 cm | Wheel ratchet - Rotor adjustment | Textile harness : PA (Polyamide) - 8 points | Jugular material : 4 points | Neckband material: Polyester - EVA foam | Optional chin | Weight: 350 g

 \oplus Adjustable headband , low or top, for a safer fit and holding cap in place when moving head

White

Yellow

Blue



QUARTZ I

EN 397 -10°C +50°C

Ventilated safety helmet with rack and pinion adjustment Shell material : Polypropylene - vented | Head size : 53-63 cm | Slip ratchet | Textile harness : 8 points | Neckband material : Polyester | Weight: 322 g

EN 397 MM LD -30°C +150°C 440VAC

x 40

SUPER QUARTZ

Electrically insulated safety helmet for extreme temperatures

(+150°C)
Shell material : ABS - Polycarbonate - Non vented | Head size : 53-63 cm | Slip ratchet | Textile harness : PA (Polyamide) - 8 points | Jugular material : 4 points | Neckband material : Polyester | Weight : 410 g

① Adjustable headband, low or top, for a better position and increasing fit and comfort

EN 397 -10°C +50°C 440VAC

ZIRCON 1

Electrically insulated safety helmet with adjustable strap Shell material : HDPE - Polypropylene - Non vented | Head size : 53-63 cm | Slip ratchet | Textile harness : Polypropylene - 8 points | Jugular material : 4 points | Neckband material : Polyester | Weight: 330 g

Green

① Adjustable headband, low or top, for a safer fit and holding cap in place when moving head

Red Orange

 $C \in$

EN 397 +50°C 440VAC

EN 352-3 SNR 24 dB H 27 M 21 L S/M/I

EN1731

FORESTIER 3

Safety helmet ideal for clearing applications due to its protective gauze visor and soundproof shells This kit contains: 1x ZIRCON1, 1x SUZUKA2, 1x VISORHOLDER, 1x

VISORG

 \oplus Adjustable headband , low or top, for a safer fit and holding cap in place when moving head

WINTER CAP

Textile lining for protection from the cold to be inserted in a safety helmet Weight: 142 g

Clear

FUEGO

EN166 1 FT / FT

Clear-lens safety glasses for use on a safety helmet Lens : Polycarbonate - Mono-bloc - Fog/Anti-scratch (classic) | Curved | Frame : Temples - Adjustable width - Nylon | Weight : 34 g

Transparent

BADGE-U

Removable badge holder for user identification, compatible with all our construction helmets Weight: 47 g

NECKALPHA

Neck protector which protects from the sun's radiations, suitable for all our construction helmets $\,$ Weight: 34 g

Black

JUGGAMMA

3-point chinstrap for Granite helmets, to keep the helmet in the right position

Weight: 21 g

Black

Thermo-compressed shell for greater comfort in construction

Neckband material: EVA foam | Weight: 21 g

DYNAMIC JUGALPHA

Black

4-point chinstrap for Diamond, Zircon and Quartz helmets to improve the fit of the helmet Weight: 21 g

x 20

DYNAMIC JUGBETA

Black

4-point chinstrap for Diamond and Onyx helmets to improve the fit of the helmet

Weight: 21 g

x 20

MENTALPHA

Black

2-point chinstrap with chin protector for a better fit of the helmet on the head Weight: 17 g

x 20

JUGALPHA

Black

2-point chinstrap for a better fit on the head Weight: 21 g

x 20

BASALPHA

Black

Shell for greater comfort in construction helmets Neckband material: EVA foam | Weight: 21 g

HESTICKER

Metal grey

Delta Plus helmet stickers to improve user visibility Weight: 10 g

Grey-Yellow

AIR COLTAN

EN 812

Ventilated protective cap for maximum comfort, available in 3

visor lengths
Cap material: Textile | Head size: 55-62 cm | Coque matérial:
Polyethylene | Coque lining: EVA | Adjustement: Clamping tab |
Weight: 176 g

COLTAAIGRMI - 3 cm. COLTAAINOMI - 3 cm.

COLTANINOSH - 5 cm COLTANIBMSH - 5 cm

EAR DEFENDERS AND EARPLUGS


26 dB

Reusable

H 25 M 23 L 22

Ø 8-10 mm

CONICSOF

Textile

x10

PIT-RADIO 3

Ear defenders with MP3 connection for listening to the radio Cup : ABS | Cushions : PVC | Support type : Over-the-head

EN 352-1 SNR 27 dB H 31 M 24 L 16 S/M/L

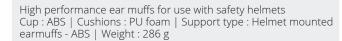
 $\ensuremath{\oplus}$ Metallic structure headband, robust, resists bending and twisting

MAGNY COURS 2

High-performance ear defenders with a headband reinforced with a metal headband

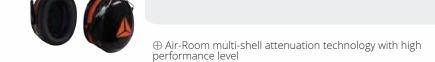
Cup : ABS | Cushions : Synthetic foam - PU | Support type : Over-the-head - ABS | Weight : 338 g ϵ

EN 352-1 SNR 33 dB H 34 M 32 L 25 S/M/I


ANSI S3.19 NNR 22 dB

 \oplus Air-Room multi-shell attenuation technology with high performance level

Black S → L


MAGNY HELMET 2

7 (

EN 352-3 SNR 30 dB H 32 M 28

ANSI S3.19 NNR 25 dB

EN 352-1 SNR 29 dB H 30 M 28 L 20 S/M/L

INTERLAGOS2

Ear defenders with double plastic headband for comfort and adjustability

Cup : ABS | Cushions : Synthetic foam | Support type : Over-the-head - POM (Acetal) | Weight : 286 g

 \oplus Ear defenders holder tool included on the belt , hearing protection always at your fingertips

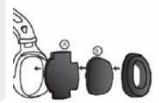
EN 352-1 SNR 30 dB H 33 M 29 S/M/I

INTERLAGOS FOLDABLE

Ear defenders with double plastic headband for comfort and adjustability, can be folded to save space

Cup : ABS | Cushions : PU foam | Support type : Over-the-head -

ABS | Weight: 282 g


Grey S → L

Grey

⊕ Foldable headband for less space and easier storage

INTERHYKIT

Hygiene kits for the Interlagos range Cushions: PVC

- \oplus Replaceable cushions available , a perfect solution of hygiene $\mbox{\it kit}$
- ⊕ Washable reusable economic solution for weeks of use

EN 352-1 SNR 27 dB H 33 M 26 L 15 S/M/L

INTERLAGOS NB 2

Earmuffs with neckband and textile strap, combining adjustability with compactness

Cup: ABS | Cushions: PVC - Synthetic foam | Support type: Behind-the-head - Stainless steel | Weight : 247 g

① Replaceable cushions available, a perfect solution of hygiene

Grey S → L

INTERLAGOS LIGHT

Lightweight ear defenders with tiltable headband

Cup : ABS | Cushions : Synthetic foam | Support type : Over-the-head - ABS | Weight : 200 g

EN 352-1 SNR 26 dB H 30 M 25 L 15 S/M/L

① Replaceable cushions available, a perfect solution for a longer use of equipement

Grey S → L

INTERLAGOS LIGHT HE

EN 352-3 SNR 26 dB H 28 M 24

L 16

Ear muffs for use with safety helmets Cup : ABS | Cushions : PVC - Synthetic foam | Support type : Helmet mounted earmuffs - ABS | Weight : 249 g

ANSI S3.19 NNR 24 dB

① Replaceable cushions available, a perfect solution for a longer use of equipement

SUZUKA 2

EN 352-3 SNR 24 dB H 27

ANSI S3.19 NNR 21 dB

Ear muffs for use with safety helmets Cup : ABS | Cushions : PVC - Synthetic foam | Support type : Helmet mounted earmuffs - ABS | Weight : 252 g

 \oplus

Blue-Black

EN 352-1 SNR 23 dB H 24 M 20 L 14 S/M/L

Ear defenders with low pressure pads Cup: ABS | Cushions: PU foam | Support type: Over-the-head -ABS | Weight: 155 g

 \oplus

 $C \in$

EN 352-2 M 32 L 31

ø 8-12 mm

SNR 34 dB H 33 M 32 1 31

EN 352-2 SNR 34 dB H 33 M 32

ANSI S3.19 NNR 26 dB

SNR 32 dB H 32 M 29 ø 8-12 mm

M 29 L 28 ø 8-12 mm

EN 352-2 SNR 26 dB H 25 M 23 L 22 ø 8-10 mm

ANSI S3.19 NNR 22 dB

CONICFIR010B

Pack of 10 pairs of reusable TPR earplugs with textile cord. Can be used with or without the cord (9 pairs in bag + 1 pair in storage box).

Earplug material: TPR (Themoplastic) | Cord - Textile

EN 352-2

ø 8-12 mm

CONICFIR050

Reusable earplugs with easy grip, box of 50 Earplug material: TPR (Themoplastic) | Cord - Nylon

L 31 ø 8-12 mm

CONICFIRDE050

Pack of 10 pairs of detectable, reusable TPR earplugs with plastic cord. Iron and brass inserts, ideal for the food industry. Can be used with or without the cord.

Earplug material: TPR (Themoplastic) | Cord - Brass: Plastic

EN 352-2

CONICFIT010B

Pack of 10 pairs of reusable silicone earplugs with PVC cord. Can be used with or without the cord (9 pairs in bag + 1 pair in storage box).

Earplug material: Silicon | Cord - PVC

EN 352-2 SNR 32 dB H 32

CONICFIT100

Reusable earplugs with easy grip Earplug material: Silicon | Cord - PVC

CONICSOF010B

Pack of 10 pairs of reusable silicone earplugs with textile cord. Can be used with or without the cord (9 pairs in bag + 1 pair in storage box).

Earplug material: Silicon | Cord - Textile

CONICMOVE01B

EN 352-2 SNR 29 dB H 31 M 25 L 23 ø 12-17 mm

ANSI S3.19 NNR 23 dB

during use, with articulated plugs on the headband Earplug material: PU foam | Banded - Polypropylene

Ergonomically designed, very stable headband for a secure fit

CONICMOVE01BRB

10 x ← C €

EN 352-2 SNR 29 dB ø 12-17 mm

ANSI S3.19 NNR 23 dB

Pack of 10 pairs of spare earplugs for CONICMOVE01B Earplug material : PU foam

Blue-Yellow

CONICAP2 01

Earplugs with headband with PU tips Earplug material: PU foam | Banded - Polypropylene

EN 352-2 SNR 27 dB H 30 M 24 L 22 ø 8-18 mm

ANSI S3.19 NNR 21 dB

Yellow

CONICAPBR2 10

Spare PU earplugs for CONICAP01 Earplug material : PU foam

SNR 27 dB H 30 M 24 L 22 ø 8-18 mm

ANSI S3.19 NNR 21 dB

Fluorescent orange

CONICCOPLUS200

Earplug material: PU foam | Cord - Plastic

EN 352-2 SNR 35 dB H 35 M 33 L 30

ø 6-15 mm

ANSI S3.19 NNR 32 dB

Fluorescent orange

CONICPLUS200

cord, box of 200

EN 352-2 SNR 35 dB H 35 M 33 L 30 ø 6-15 mm

High visibility, high performance disposable earplugs, box of 200 Earplug material: PU foam | Unsupported

High visibility and high performance disposable earplugs with

EN 352-2 SNR 37 dB H 37 M 35 L 30 ø 7-12 mm

CONICDE200

Box of 200 pairs of detectable polyurethane earplugs with detectable plastic cord (iron and brass inserts), ideal for the food industry. Individual plastic sachet with 2 earplugs. Earplug material : PU foam | Cord - Brass : Plastic

EN 352-2 SNR 37 dB H 37 1.30 ø 7-12 mm

CONICCO2 200

Dispenser box containing 200 pairs of single-use polyurethane earplugs with plastic cord. Individual plastic bag with 2 plugs. Earplug material : PU foam | Cord - Plastic

 $C \in$

EN 352-2 SNR 37 dB H 37 M 35 L 30 ø 7-12 mm

CONIC2 010

Pack of 10 pairs (in individual sachets) of single-use polyurethane earplugs. Easy and practical to use in a toolbox or for users on the move.

Earplug material: PU foam | Unsupported

EN 352-2 SNR 37 dB H 37 M 35 L 30 ø 7-12 mm

x 5

CONIC2 200

Dispenser box containing 200 pairs of single-use polyurethane earplugs. Easy-to-use and hygienic with its individual plastic sachet with 2 earplugs.

Earplug material: PU foam | Unsupported

SNR 37 dB H 37 M 35 L 30 ø 7-12 mm

EN 352-2

CONIC2 500

Refill of 500 pairs of single-use polyurethane earplugs -Economical and easy to use, for use with Conic Display Earplug material : PÚ foam | Unsupported

EN 352-2 SNR 37 dB H 37 M 35 L 30

CONIC DISPLAY

Earplug dispenser for ease of use Earplug material: PU foam | Unsupported

Grey

REUSABLE RESPIRATORY PROTECTION

Gas

EN143/A1

M9200 **ROTOR GALAXY**

- Rotor® registered mark
- Adjustable size
- Wide vision (210C°)

M9300 STRAP **GALAXY**

- Adjustable size
- Wide vision (210°)
- To be used with helmet

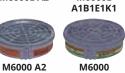
M9001E AX M9001E AXP3 M9001E ABE2 M9001E ABE2P3 M9001E ABEKHgP3 M9001E K2 M9001E K2P3

M6000 A1

M9001E E2P3

M9001E A2 M9001E

M9001 P3



M6400 - JUPITER

- Comfort half mask PP/TPE
- Elastic straps and harness
- 2 filter cartridges

M6000E

M6000 P2

M6000 P3

M6000 PREP3 M6000 P2CLIP

M6300 - JUPITER

- Comfort half mask PP/TPE
- Elastic straps and harness
- 1 filter cartridge
- Available out of Europe

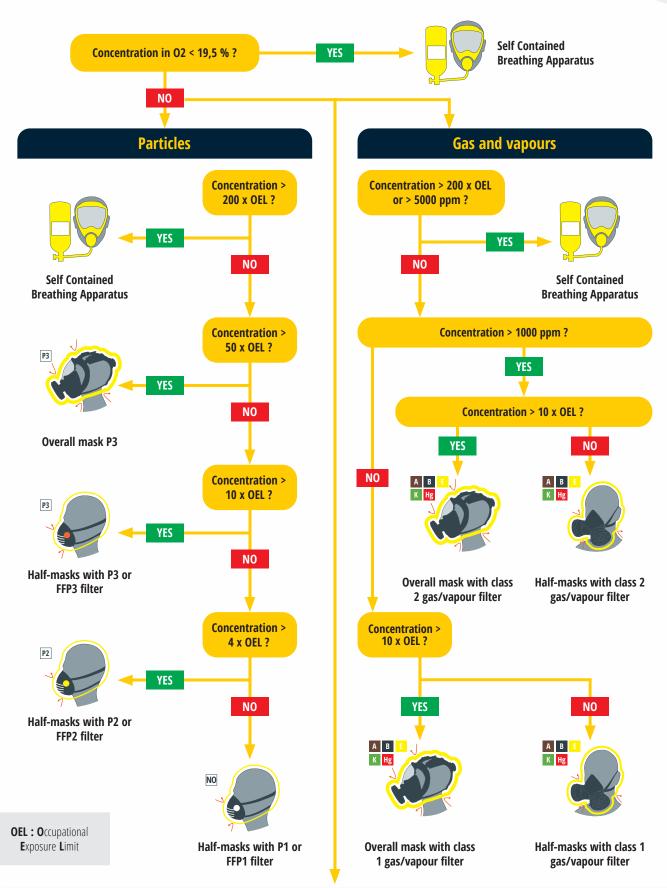
A1B1E1K1

M6000 A1

M6000 PREP3

M6000 P3

M6000 P2CLIP


Advice: Change the filter after each use, or quicker if the atmosphere is polluted, humid and the air flow (or breathing) is high.

Particles + Gas / vapours

Choose a full face mask or half mask with the appropriate filter for the gas/ vapour concentration combined with a particulate pre-filter appropriate for their concentration, according to the decision above.

Black-Orange

M9200 - ROTOR GALAXY

 $C \in$ EN 148-1 EN 136

Full face mask with panoramic vision, equipped with the patented Rotor adjustment system, dedicated to chemical and particulate environments

Material : Silicone | Visor material : Polycarbonate | Fastening :

 \oplus Class 3 : Resistance to radiant heat and flame can be used in extreme conditions

⊕ Adjustable size S/ M/ L suitable for most types of faces

 $C \in$

EN 148-1

EN 136 Class 3

M9300 - STRAP GALAXY

Full face mask with panoramic vision, equipped with silicone straps for easy use with other PPE, dedicated to chemical and particulate environments
Material : Silicone | Visor material : Polycarbonate | Fastening :

 \oplus Class 3 : Resistance to radiant heat and flame can be used in extreme conditions

⊕ Adjustable size S/ M/ L suitable for most types of faces

 $C \in$

EN 140

M6400E JUPITER

Reusable, overmoulded half-mask with 2 cartridges, combining flexibility and a good fit in chemical and particulate environments Material : TPE | Fastening : Bridles

 \oplus M6000 Bayonet anchor is compatible with the M6000 cartridge range (gas and particles), 2 masks one set of cartridges

 $C \in$

EN 140

EN 14387

EN 143

M6400 CHEM KIT

ABEK1 P3 half mask and filter respiratory kit, ideal for chemical environments

This kit contains: 1x M6400E, 1x M6000EA1B1E1K1, 1x M6000EPREP3

 \oplus M6000 Bayonet anchor is compatible with the M6000 cartridge range (gas and particles), 2 masks one set of cartridges

 $C \in$

EN 140

EN 143 P3R EN 14387

M6400 SPRAY KIT

A2P3 half mask and filter respiratory kit, ideal for chemical and painting environments
This kit contains: 1x M6400E, 1x M6000EA2, 1x M6000EPREP3

 \oplus M6000 Bayonet anchor is compatible with the M6000 cartridge range (gas and particles), 2 masks one set of cartridges

EN 140

EN 143

EN 14387

M6400 MARS KIT

A2P2 half mask and filter respiratory kit, ideal in less polluted

This kit contains: 1x M6400E, 1x M6000EA2, 1x M6000EPREP2

⊕ M6000 Bayonet anchor is compatible with the M6000 cartridge range (gas and particles), 2 masks one set of cartridges

Reusable respiratory

M9001E A2

EN 148-1

EN 14387

Box of 4 A2 filter cartridges for M9200 ROTOR GALAXY and M9300 STRAP GALAXY full-face masks. Re-sealable caps allow the cartridge to be re-used after use for a longer life. Universal DIN40 mounting system Active coal

Black

M9000 P3

FN 148-1

EN 143

Box of 4 P3 filter cartridges for M9200 ROTOR GALAXY and M9300 STRAP GALAXY full-face masks. Re-sealable caps allow the cartridge to be re-used after use for a longer life. Universal DIN40 mounting system

Black

M9001E A2P3

 ϵ

EN 143

EN 148-1

Box of 4 A2P3 filter cartridges for M9200 ROTOR GALAXY and M9300 STRAP GALAXY full-face masks. Re-sealable caps allow the cartridge to be re-used after use for a longer life. Universal DIN40 mounting system Active coal

Black

M9001E ABEK2

 $C \in$ EN 148-1 EN 14387

Box of 4 A2B2E2K2 filter cartridges for M9200 ROTOR GALAXY and M9300 STRAP GALAXY full-face masks. Re-sealable caps allow the cartridge to be re-used after use for a longer life. Universal DIN40 mounting system Active coal

Black

M9001E ABEK2P3

 $C \in$ EN 14387 EN 143

EN 148-1

Box of 4 A2B2E2K2P3 filter cartridges for M9200 ROTOR GALAXY and M9300 STRAP GALAXY full-face masks. Re-sealable caps allow the cartridge to be re-used after use for a longer life. Universal DIN40 mounting system Active coal

C € EN 14387

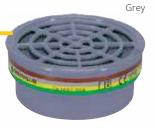
M6000 A1

Pack of 2 A1 filter inserts for M6100 JUPITER, M6200 JUPITER and M6400 JUPITER half masks. Active coal

C EN 14387 A2

M6000E A2

Pack of 2 A2 filter inserts for M6200 JUPITER and M6400 JUPITER half-masks. Active coal



C EN 14387A1B1E1K1

M6000E ABEK1

Pack of 2 A1B1E1K1 multi-use combination filter inserts for M6200 JUPITER and M6400 JUPITER half masks. Active coal

C E P2

M6000E PREP2

Kit of 6 P2 pre-filters and 2 adapters for M6000 JUPITER series half-mask. To be used with M6000E filters. Nonwoven

Grey

CE EN 143

M6000E PREP3

Kit of 2 P3 pre-filters and 2 adapters for JUPITER M6000 series half-mask. To be used with M6000E filters. Nonwoven

Reusable respiratory

Grey

M6000 P2 CLIP

EN 143 P2NR

Kit of 2 P2 filters for M6100 JUPITER, M6200 JUPITER and M6400 JUPITER half masks + 20 spare P2 filters. Nonwoven

M6000REFP2CLIP

EN 143 P2

Pack of 20 P2 filter replacements for M6000P2CLIP. Nonwoven

Grey

M6000 P2

EN 143 P2

Pack of 2 P2 filter inserts for M6100 JUPITER, M6200 JUPITER and M6400 JUPITER half masks. Nonwoven

Grey

M6000 P3

EN 143

Pack of 2 P3 filter inserts for M6100 JUPITER, M6200 JUPITER and M6400 JUPITER half masks. Nonwoven

DISPOSABLE RESPIRATORY PROTECTION

Nominal protection factor* x4

• Cement dust, flour, calcium carbonate, (chalk), graphite, cotton, concrete...*

Nominal protection factor* x12

· Untreated softwood, grinding, cutting, welding, milling, coal, glass fibre, mineral fibre, graphite, powdered pesticide...**

Nominal protection factor* x50

 Asbestos (without manipulation), powdered pesticide, biological agents, pharmaceutical powder, treated wood, hard wood (exotic), chromium, lime, lead...**

х5

x30

Smell filtering

x30

RFlame

retardant

х2 Smell filtering

X30

CONFORT PLUS M1300V / M2FP3V

D

x20

CONFORT

M1300V2

D Optional test of EN149: 2001 standard for clogging of dolomite dust.

^{*}The Assigned Protection Factor, might be different according local regulations.

**This list is indicative but not contractual and can not engage the responsibility of Delta Plus.

CHOOSE THE RIGHT MASK

3 axis for an optimal respiratory protection:

Comfort and ergonomic

Facilitate breathing:

- space
- evacuation of heat and moisture

Compatible

with other PPEs

AER range

Design for an excellent field of view. Compatible with safety glasses. Nose clip for optimal adjustment.

CONFORT PLUS range

Moulded design for optimised respiratory comfort. Precise adjustment by straps to adapt to all morphology. Soft foam edge for an excellent face comfort.

CONFORT range

Classic and comfortable, the optimised solution of respiratory protection.

SPIDERMASK range

Economical and ecological by its concept of replaceable filters.

FOLDABLE RANGE

POCKET Range

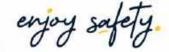
SMOG Range

Protection on the go: foldable, compact, easy to transport and stock.

PROPERLY ADJUST YOUR MASK

Hold the preformed mask in the palm of your hand, with the nose bar towards the top and the straps hanging down.

Place the mask under your chin, covering your mouth and nose.


Take the upper elastic strap and pass it around the back of your head, take the lower elastic strap and pass it round the back of your neck (for the COMFORT PLUS range, adjust the adjustable straps).

Mould the nose bar around the nose to seal it off completely.

Check the seal by breathing out hard and ensure that no air leaks around the sides of the mask. If necessary, readjust and check again.

C EN 149 FFP3

SPIDERMASK P3 1+5

P3 disposable or reusable mask with valve, with a structure that allows only the filter media to be changed Material: Mesh - Synthetical nonwoven - TPE - Molded |

Fastening : Bridles - Clip

C E EN 149 FFP2

SPIDERMASK P2 1+5

P2 disposable or reusable mask with valve, with a structure that allows only the filter media to be changed

Material : Mesh - Synthetical nonwoven - TPE - Molded |

Fastening : Bridles - Clip

CE EN 149

SPIDERMASK P2W X5

P3 disposable or reusable mask with valve, with a structure that allows only the anti-odour filter media to be changed Material: Mesh - TPE - Molded | Fastening: Bridles - Clip

C E EN 149 FFP3

SPIDER REFILL FFP3

Replacement filter media for SPIDERMASK P315, box of 30 Material: Synthetical nonwoven - Spare filter parts

CE EN 149
FFP2 NF

SPIDER REFILL FFP2

Replacement filter media for SPIDERMASK P215, box of 30 Material: Synthetical nonwoven - Spare filter parts

CE EN 149

SPIDER REFILL FFP2W

Replacement filter media for SPIDERMASK P2W X5, box of 30 Material: Synthetical nonwoven - Spare filter parts

Disposable respiratory

M1305VW

EN 149

Box of 10-piece FFP3 (valve) facial filter masks with activated charcoal for protection against noxious odours (e.g. welding fumes). Foldable 4-panel mask for all types of faces. Material : Synthetical nonwoven - Foldable | Nose clip : Steel | Fastening : Bridles

M1305V

10 x

CE

EN 149 FFP3 NR

Box of 10-piece FFP3 facial filter masks (valve) in non-woven synthetic fibre. Foldable 4-panel mask for all types of faces. Adjustable nose bridge with foam edge reinforcement Material : Synthetical nonwoven - Foldable | Nose clip : Steel | Fastening: Bridles

M1205V

EN 149 FFP2 NR

Box of 10-piece FFP2 facial filter masks (valve) in non-woven synthetic fibre. Foldable 4-panel mask for all types of faces. Adjustable nose bridge with foam edge reinforcement Material: Synthetical nonwoven - Foldable | Nose clip: Steel | Fastening: Bridles

M1205

FFP2 NR

Box of 20-piece FFP2 facial filter mask in non-woven synthetic fibre. Foldable 4-panel mask for all types of faces. Adjustable nose bridge with foam edge reinforcement Material: Synthetical nonwoven - Foldable | Nose clip: Steel |

Fastening: Bridles

M1105

EN 149

Box of 20-piece FFP1 facial filter masks in non-woven synthetic fibre. Foldable 4-panel mask for all types of faces. Nose bridge with foam edge reinforcement.

Material: Synthetical nonwoven - Foldable | Nose clip: Steel | Fastening: Bridles

White

M1300V

EN 149

P3 disposable mask with valve and wide adjustable straps for a

Material: Synthetical nonwoven - Molded | Face joint material: Foam | Nose clip : Steel | Fastening : Bridles

EN 149 $C \in$

x 36

M2FP3V

P3 disposable mask with valve and wide adjustable straps for a

better fit, pack of 2 Material : Synthetical nonwoven - Molded | Face joint material : Foam | Nose clip : Steel | Fastening : Bridles

EN 149 $C \in$

x 10

M1200VPLUS

P2 disposable mask with valve and wide adjustable straps for a

Material : Synthetical nonwoven - Molded | Face joint material : Foam | Nose clip : Steel | Fastening : Bridles

EN 149 $C \in$ FFP2 NR

x 40

M2FP2VPLW

P2 anti-odour disposable mask with valve and wide adjustable straps for a better fit

Material : Synthetical nonwoven - Molded | Face joint material : Foam | Nose clip : Steel | Fastening : Bridles

 $C \in$ FFP3 NR

x 10

M1300V2

P3 disposable mask with valve

Material: Synthetical nonwoven - Molded | Nose clip: Steel |

Fastening: Bridles

EN 149 $C \in$

x 10

M1200V

P2 disposable mask with valve

Material: Synthetical nonwoven - Molded | Nose clip: Steel |

Fastening: Bridles

EN 149 $C \in$

x 36

M2FP2V

P1 disposable mask without valve, pack of 2

Material: Synthetical nonwoven - Molded | Nose clip: Steel |

Fastening : Bridles

Disposable respiratory

M1200VW

EN 149

P2 disposable, anti-odour mask with valve Material: Synthetical nonwoven - Molded | Nose clip: Steel | Fastening: Bridles

M2FP2VW

EN 149 FFP2 NR

P2 disposable anti-odour mask with valve, pack of 2 Material : Synthetical nonwoven - Molded | Nose clip : Steel | Fastening: Bridles

M1200

EN 149 FFP2 NR

P2 disposable mask without valve Material : Synthetical nonwoven - Molded | Nose clip : Steel | Fastening: Bridles

White

M1100V

P1 disposable mask with valve Material : Synthetical nonwoven - Molded | Nose clip : Steel | Fastening: Bridles

White

M1100

EN 149 FFP1

P1 disposable mask without valve

Material: Synthetical nonwoven - Molded | Nose clip: Steel | Fastening: Bridles

White

M3FP1

EN 149

P1 disposable mask without valve, pack of 3 Material: Synthetical nonwoven - Molded | Nose clip: Steel | Fastening: Bridles

CE EN 149

M1300VB

Simple and efficient P3 disposable respirator mask, vertically foldable, with valve for optimised breathing comfort Material: Synthetical nonwoven - Foldable | Nose clip: Steel | Fastening: Bridles

CE EN 149

M1200VB

Simple and efficient P2 disposable respirator mask, vertically foldable, with valve for optimised breathing comfort Material: Synthetical nonwoven - Foldable | Nose clip: Steel | Fastening: Bridles

CE EN 149

M1100VB

Simple and efficient P1 disposable respirator mask, vertically foldable, with valve for optimised breathing comfort Material: Synthetical nonwoven - Foldable | Nose clip: Steel | Fastening: Bridles

CE EN 149
FFP2 NR

M1202BHC

P2 disposable mask without valve, vertically foldable, equipped with inner comfort foam and elastic behind the ears Material : Synthetical nonwoven - Foldable | Nose clip : Steel | Fastening : Bridles

EN 14683 Type II

HM11001U

Dispenser boxes of 50 disposable Type II medical masks. Class 1 medical device. 3 folds. Nose clip for adjustment. Non-woven polypropylene.

Material : Synthetical nonwoven - Foldable | Nose clip : Steel | Fastening : Bridles

Cut protection

Intense cut work	90
Long-lasting cut work	92
Slightly sharp and long-lasting work	96
Slightly sharp and non intensive work	97

Mechanical protection for precision works

Works in dry environment	99
Works in oily environment	100
Works in dry environment	101
Specific works	104
Works in wet environment	105

Mechanical protection for multi purpose works

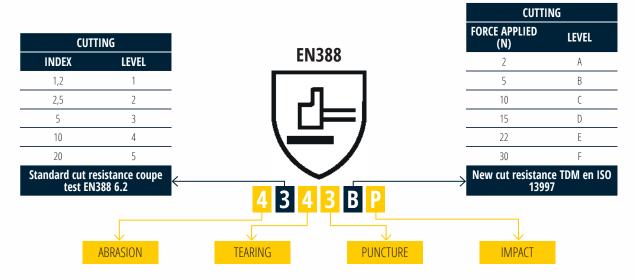
Works in dry environment	107
Works in wet environment	111

Mechanical protection for heavy works

Works in oily environment	113
Works in wet environment	114

Chemical protection

Work with prolonged chemical resistance	116
Work with occasional chemical resistance	123
Disposable	124


Thermal protection

Thermal cold works	126
Thermal welding works	130
Thermal specific works	132

enjoy safety.

CUT RESISTANT GLOVES

For gloves made of very resistant materials (materials that blunt the blade during the test), the Coupe Test is no longer relevant, a TDM test becomes mandatory.

The TDM test is also more representative of work situations with high risk of cut.

THE FIBRES

XTREMcut+

Your ally in extreme cutting conditions

• Association of innovative fibers that guarantee optimal cut protection.

DELTAnocut®

- Polymer high resistance.
- Maximum dexterity.
- Washable: hygienic, gloves can be re-used.
- **Reduced thickness:** Fine touch and better breathability.
- **Soft touch:** texture provides comfort and feeling of freshness all day.

HEATnocut

For maximum safety and a good contact-heat protection

- Cut resistance adapted to the risk
- High level of abrasion resistance.
- Heat resistance up to 100°C or 250°C depending on the model.

SOFTnocut

To combine safety and comfort

- Excellent **cut** resistance.
- Maximum abrasion performance.
- Soft fibre: High level of comfort.

ECOnocut

To combine safety and «attractive price»

- Different levels of cutting resistance.
- · Good abrasion performance.
- Economical fibre: good price.

FULL RANGE

VENICUTF08


Level F cut-resistant glove, ideal for dry conditions. Support: Knitted - Glass Fiber - PEHD - Steel Fiber | Enduction : PU - Palm coated | Gauge : 13

VENICUTF07

Level F cut-resistant glove, ideal for oily or aqueous environments. Support : Knitted - Econocut - Glass Fiber - PEHD - Steel Fiber | Coating: Grip-textured nitrile - Palm coated | Gauge: 13

⊕ Nitrile means no risk of allergies for users

Level F cut-resistant glove, ideal for heavy duty work in dry

Support : Knitted - Xtremcut | Coating : PU - Palm coated | Reinforcements : Thumb-index | Long cuff | Gauge : 13

VENICUT F XTREM CUT TOUCH -60 x VENICUTF02

Level F cut-resistant glove, combining comfort and flexibility for precision work in oily or aqueous environments. Support : Knitted - Xtremcut | Coating : Aqua-polymere foam -Palm coated | Reinforcements : Thumb-index | Gauge : 18

Lightweight for optimal dexterity

VENICUT F XTREM CUT -VENICUTF01

Level F cut-resistant glove ideal for heavy duty work in oily or aqueous environments

Support : Knitted - Xtremcut | Coating : Nitrile foam - Palm coated | Reinforcements : Thumb-index | Long cuff | Gauge : 13

① Xtrem CUT fiber for comfort and flexibility combined with the highest level of cut protection on the market

VENICUTF00

Uncoated level F cut-resistant glove, combining comfort and flexibility, ideal for food industry

Support : Knitted - PEHD - Steel Fiber | Gauge : 15

① Tested before and after washing: performance unchanged

EOS NOCUT VV910

Level D cut, impact-resistant glove, ideal for multipurpose work in aqueous or oily environments

Support : Knitted - Kevlar - PEHD | Coating : Nitrile double layer -Palm coated | Reinforcements : Palm - Finger's back - Thumb -Thumb-index - Back | Velcro cuff | Gauge: 13

⊕ Flexible reinforcements for added protection against impact and pinching

EOS NOCUT WINTER VV913

Level D cut, winter impact-resistant glove, ideal for multipurpose work in aqueous or oily environments

Support : Cut and sewn | Material : PEHD - Kevlar | Coating : Nitrile double layer - Palm coated | Reinforcements : Palm -Finger's back - Back | Lining : Acrylic | Velcro cuff

⊕ Flexible reinforcements for added protection against impact and pinching

Black 8 → 11

EOS FLEX CUT D VV922

Fully coated except wrist | Gauge: 15

Impact-resistant glove with level D cut protection for the whole hand, ideal for multi-purpose work in aqueous or oily

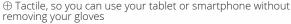
Support: Knitted - SOFTnocut | Coating: Thermoplastic smooth -

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand ⊕ Flexible reinforcements for added protection against impact

VENICUTD05

environments

Level D cut-resistant glove with electrostatic properties and very



⊕ Washable glove, so it can be reused

VENICUTD03

Gauge: 15

ANSI ISEA 105

Tactile level D cut-resistant glove combining comfort and finesse of work, ideal in oily or aqueous environments Support : Knitted - DELTAnocut | Coating : Grip-textured nitrile -Palm coated | Reinforcements : Thumb-index | Long cuff |

 \oplus Tactile, so you can use your tablet or smartphone without removing your gloves

① Reduces perspiration thanks to its excellent breathability

Black

VENICUTD04

Level D cut-resistant glove, waterproof up to the wrist, combining comfort and finesse of work, ideal in oily or aqueous environments

Support : Knitted - DELTAnocut | Coating : Nitrile double layer -Fully coated except wrist | Long cuff | Gauge : 13

⊕ High-quality coating extends the life of the glove and provides excellent protection for the hand

Level D cut-resistant glove with breathable coating and very soft material for intensive and careful use Support : Knitted - DELTAnocut - Cow leather | Coating : PU -

Palm coated | Long cuff | Gauge : 13

⊕ Reduces perspiration thanks to its excellent breathability

VENICUTDX1

Level C cut-resistant glove with padding for extra durability, ideal in dry conditions

Support : Knitted - SOFTnocut | Coating : PU - Palm coated | Reinforcements: Thumb-index | Long cuff | Gauge: 13

⊕ Lightweight for optimal dexterity

VENICUTD02

Level D cut-resistant glove with very good thermal resistance, ideal in wet conditions

Support : Knitted - HEATnocut | Coating : Latex grip textured -Palm coated | Gauge : 10

 \oplus The high-performance HEATnocut fiber provides excellent abrasion and cut resistance

VENICUTD01

Level D cut-resistant glove with good thermal resistance, ideal for use in oily or aqueous environments

Support : Knitted - HEATnocut | Coating : Nitrile foam - Palm coated | Gauge : 13

⊕ The high-performance HEATnocut fiber provides excellent abrasion and cut resistance

Long-lasting cut work

Blue-White 6 → 11

VENICUTD00

Uncoated level D cut-resistant glove, combining comfort and flexibility, ideal for food industry. Support: Knitted - PEHD - Steel Fiber | Gauge: 15

⊕ Tested before and after washing: performance unchanged

VENICUTDX0

Level D cut-resistant glove, contact heat resistant up to 250°, ideal for intensive work

Support : Knitted - HEATnocut - PEHD | Reinforcements : Palm -Finger's back | Gauge : 10

⊕ The high-performance HEATnocut fiber provides excellent abrasion and cut resistance

ECONOCUTDM1

Versatile level D, cut resistant sleeve, ideal for long term cutting Support: Knitted - Econocut | Gauge: 13 | Length: 550 mm

 \oplus Extra thick and long for extra protection of the entire arm

VENICUTD07

Level D cut-resistant glove, ideal for oily or aqueous environments Support : Knitted - Econocut | Coating : Smooth nitrile - Palm coated | Gauge : 13

① User-friendly worksite package, including three pairs for weekly use

VENICUTD08

Level D cut-resistant glove, ideal in dry conditions Support : Knitted - Econocut | Coating : PU - Palm coated |

Gauge: 13

⊕ User-friendly worksite package, including three pairs for weekly use

VENICUTD10

Level D anti-cut glove with extremely fine handling and comfort of

use, ideal for dry conditions.

Support: Knitted - Nylon - PEHD - Spandex | Coating: PU - Palm coated | Reinforcements: Thumb-index | Gauge: 21

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

Level D anti-cut glove with extremely fine handling and comfort of use, ideal for use in oily and greasy environments.

Support: Knitted - Nylon - PEHD - Spandex | Coating: Grip-textured nitrile - Palm coated | Reinforcements: Thumb-index | Gauge: 21

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VENICUTC02

in dry conditions

⊕ Reduces perspiration thanks to its excellent breathability

Level C cut-resistant glove with padding for extra durability, ideal

Support: Knitted - SOFTnocut | Coating: PU - Palm coated | Reinforcements: Thumb-index | Long cuff | Gauge: 15

Lightweight for optimal dexterity

VENICUTC01

Level C cut-resistant glove with padding for extra durability, ideal for use in oily or aqueous environments
Support: Knitted - SOFTnocut | Coating: Nitrile foam - Palm coated | Reinforcements : Thumb-index | Long cuff | Gauge : 15

Lightweight for optimal dexterity

Level C cut-resistant multi-purpose glove, ideal for use in the

Support: Knitted - HEATnocut | Gauge: 10

VENICUTCM1

abrasion and cut resistance

heavy industry

⊕ The high-performance HEATnocut fiber provides excellent abrasion and cut resistance

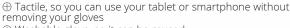
Support: HEATnocut | Gauge: 13 | Length: 450 mm

VENICUTB01

Level B cut-resistant glove, ideal for use in electrostatic environments

Support : Knitted - DELTAnocut - Carbon | Coating : PU - Palm coated | Gauge: 15

⊕ Tactile, so you can use your tablet or smartphone without removing your gloves



VENICUTB05

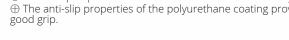
Level B cut-resistant glove with electrostatic properties, allowing a high degree of finesse in work, ideal in dry conditions Support : Knitted - DELTAnocut - Carbon | Coating : PU - Palm coated | Gauge: 18

⊕ Washable glove, so it can be reused

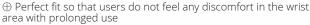
VENICUTB02

VENICUTB00

Level B cut-resistant glove with a long protective cuff, ideal for dry conditions


Support: Knitted - SOFTnocut | Coating: PU - Palm coated | Long cuff | Gauge : 13

 \oplus Reduces perspiration thanks to its excellent breathability ⊕ The anti-slip properties of the polyurethane coating provides



Uncoated, level D cut-resistant glove, ideal for the food industry Support: Knitted - SOFTnocut | Long cuff | Gauge: 15

⊕ Washable glove, so it can be reused

VENICUTB06

ANSI ISEA 105 A2

Level B cut-resistant glove allowing finesse in work in oily or aqueous environments

Support : Knitted - SOFTnocut | Coating : Smooth nitrile - Palm coated | Gauge : 18

① Reduces perspiration thanks to its excellent breathability

VENICUTB04

40 x

Level B cut-resistant glove, ideal for dry conditions Support : Knitted - Econocut | Coating : PU - Palm coated | Gauge : 13

 $\ensuremath{\bigoplus}$ User-friendly worksite package, including three pairs for weekly use

VENICUTB03

Level B cut-resistant glove, ideal for use in oily or aqueous environments

Support : Knitted - Econocut \mid Coating : Smooth nitrile - Palm coated \mid Gauge : 13

 $\ensuremath{\oplus}$ User-friendly worksite package, including three pairs for weekly use

VENICUTBGREEN

Eco-friendly level B cut-resistant glove, ideal for dry conditions. Support: Knitted - Polyester | Coating: PU - Palm coated | Gauge: 13

 \oplus Tested before and after washing: performance unchanged

CE

VV704

Mechanical glove with very good dexterity for precision work in dry conditions

Support : Knitted - Polyamid | Coating : PU - Palm coated | Gauge: 18

① Reduces perspiration thanks to its excellent breathability

 $C \in$

SAFE & STRONG VV811

Solvent-free mechanical glove suitable for all environments Support : Knitted - Polyamid | Coating : Aqua-polymere smooth -Palm coated | Gauge : 15

⊕ Environmentally-friendly thanks to its solvent-free coating ⊕ Silicone-free/ DMF-free, leaving no residue on components while limiting allergies

 ϵ

HESTIA VV702NO

Very thin mechanical glove, ideal for precision work in dry

Support: Knitted - Polyamid | Coating: PU - Palm coated | Gauge: 15

 $\ensuremath{\oplus}$ The anti-slip properties of the polyurethane coating provides good grip.

VENICUT10

Coated mechanical glove, ideal for the food industry Support: Knitted - Polyamid | Coating: PU - Palm coated |

Gauge: 15

① Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

Works in oily environment

White-Grey 6 → 11

VV712BC

Mechanical glove with ultra-fine coating, ideal for oily and greasy environments.

Support: Knitted - Polyamid | Coating: Smooth nitrile - Palm coated | Gauge : 13

⊕ Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VV712NO

Mechanical glove with ultra-fine coating, ideal for oily and greasy environments.

Support : Knitted - Polyamid | Coating : Smooth nitrile - Palm coated | Gauge: 13

① Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

White

Mechanical glove ideal for dry conditions, washable and more comfortable for extended wear.

Support: Knitted - Polyamid | Coating: PU - Palm coated | Gauge: 13

 \oplus The anti-slip properties of the polyurethane coating provides good grip.

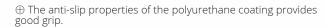
Grey 6 → 10

VE702GR

Mechanical glove ideal for dry conditions, washable and more comfortable for extended wear.

Support: Knitted - Polyamid | Coating: PU - Palm coated | Gauge: 13

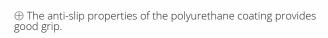
⊕ The anti-slip properties of the polyurethane coating provides good grip.



VE702PG

Mechanical glove ideal for multipurpose work Support : Knitted - Polyester | Coating : PU - Palm coated |

Gauge: 13


 $C \in$

VE702P

Mechanical glove ideal for work in dry environments Support: Knitted - Polyester | Coating: PU - Palm coated | Gauge: 13

 ϵ

VE702PN

Mechanical glove ideal for the automotive industry due to its low

Support: Knitted - Polyester | Coating: PU - Palm coated | Gauge: 13

 $\ensuremath{\oplus}$ The anti-slip properties of the polyurethane coating provides good grip.

CE

VE702GREEN

Washable, eco-responsible and comfortable mechanical glove for prolonged wear in dry conditions Support : Knitted | Material : Polyester | Coating : PU - Palm

coated | Gauge : 13

① Tested before and after washing: performance unchanged

VE631

Mechanical glove ideal for precision work in oily environments Support : Knitted - Polyester | Coating : Latex foam - Palm coated | Gauge : 13

Grey-Black 7 → 10

VE630

Mechanical glove ideal for precision work in oily environments Support : Knitted - Polyester | Coating : Latex grip textured - Palm coated | Gauge : 13

White 8 → 11

50MAC

Reinforced palm mitt for minor risks Support : Grain leather - Goat leather | Reinforcements : Palm | Velcro cuff | Thickness : 0,6 mm

 \oplus Lightweight for optimal dexterity

Na<u>t</u>ural-Blue

CT402

Mechanical leather glove, ideal for dry conditions Support : Cut and sewn - Grain leather - Goat leather | Sewn open cuff with elastic | Thickness : 0,7 mm

PM159

Non-coated, ambidextrous mechanical glove Support : Knitted - Polyamid | Gauge : 13

⊕ Lightweight for optimal dexterity

PM160

Mechanical glove, with studs for a better grip Support : Knitted - Polyamid | PVC Dots | Gauge : 13

White 7 → 9

⊕ Lightweight for optimal dexterity



TP169

Mechanical glove, with studs for a better grip Support : Knitted - Polyester/coton | PVC Dots | Gauge : 7

Mechanical, non-coated, ambidextrous glove

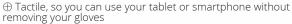
 $7 \rightarrow 9$

Support: Cut and sewn

COB40

⊕ Lightweight for optimal dexterity

White 6 → 11


VE702PESD

Tactile mechanical glove with electrostatic properties Support : Knitted - Polyester | Coating : PU - Palm coated | Gauge: 13

⊕ High electrostatic dissipation to reduce the risk of sparking

THEMIS VV792 ESD

Mechanical glove with electrostatic properties for precision work Support : Knitted - Copper Fiber - Polyamid | Coating : PU - Fingertip coated | Gauge : 15

⊕ High electrostatic dissipation to reduce the risk of sparking

Grey-Black 6 → 11

VV722ESD

Mechanical glove with electrostatic properties for precision work. Support : Knitted - Carbon - Polyamid | Coating : Nitrile foam -Palm coated | Gauge : 15

 \oplus Tactile, so you can use your tablet or smartphone without removing your gloves

VE723GREEN

Eco-responsible mechanical glove with a fine working surface, ideal for oily and greasy environments. Support : Knitted - Polyester | Coating : Nitrile foam - Palm coated

| Gauge : 15

① Tested before and after washing: performance unchanged

 $C \in$

VE723NO

Mechanical glove, with a finesse of work, ideal in oily and greasy environments

Support : Knitted - Polyester - Spandex | Coating : Nitrile foam -Palm coated | Gauge : 15

① Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VE724NO

Mechanical glove up to mid-back with a good grip on handled objects, ideal for dry and wet environments Support : Knitted - Polyester - Spandex | Coating : Nitrile foam -Palm coated | Nitrile Dots | Gauge : 15

 $\ensuremath{\oplus}$ Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VE725NO

Waterproof, mechanical glove up to mid-back with a good grip on handled objects, ideal for dry and wet environments Support : Knitted - Polyester - Spandex | Coating : Smooth nitrile - 3/4 Coated | Nitrile Dots | Gauge : 15

Black 7 → 1

① Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

Fluorescent yellow-Black

APOLLONIT VV734

Mechanical glove with good breathability, ideal for oily and aqueous environments
Support : Knitted - Polyester - Spandex | Coating : Nitrile

thermoplastic foam textured - Palm coated | Gauge : 15

⊕ Tactile, so you can use your tablet or smartphone without removing your gloves

VE712GR

Mechanical glove with pesticide protection, ideal for oily and greasy environments
Support : Knitted - Polyester | Coating : Smooth nitrile - Palm

coated | Gauge: 13

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

Waterproof, mechanical glove up to mid-back, ideal for wet

Support: Knitted - Polyester | Coating: Smooth nitrile - 3/4 Coated | Gauge: 13

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

Grey-Black

VE722

Mechanical glove, ideal for oily and greasy environments Support : Knitted - Polyester | Coating : Nitrile foam - Palm coated | Gauge : 13

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

Mechanical protection for multi purpose works

EOS VV900JA

Level B cut-resistant and shock-resistant glove for multipurpose work

Support : Cut and sewn | Material : Impregnated PU cloth - Polyester - Polyamid | Reinforcements : Palm - Finger's back - Finger's palm - Thumb - Thumb-index - Back - Fist | PVC Dots | Velcro cuff

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

 \oplus Flexible reinforcements for added protection against impact and pinching

 ϵ

SAFE & TOUCH VV905NO

Mechanical glove with high precision for work in dry conditions Reinforcements : Palm | Velcro cuff

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

 ϵ

BOREE VV901

Mechanical glove with very good breathability for multipurpose work

Support : Cut and sewn | Reinforcements : Palm - Thumb-index | Velcro cuff

Yellow-Grey-Black 7 → 9

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

 $C \in$

ATHOS VV902

Shock-resistant, mechanical glove for multipurpose work Support : Cut and sewn - Polyamid | Material : Polyester | Reinforcements : Back | Velcro cuff

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

 \oplus Flexible reinforcements for added protection against impact and pinching

Blue 6 → 11

Fluorescent yellow-Black 7 → 10

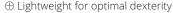
VV733GREEN

Washable, eco-responsible mechanical glove with enhanced breathability, ideal for wet conditions.
Support: Knitted - Polyester | Coating: Latex foam - Palm coated

| Gauge : 13

⊕ Washable glove, so it can be reused

APOLLON VV733



Mechanical glove with high breathability and easy to spot with its fluorescent backing, ideal in wet conditions
Support: Knitted - Polyester | Coating: Latex foam - Palm coated

| Gauge : 13

⊕ Fluorescent backing for easy visual identification of the glove

7 → 10

VE730

Mechanical glove with a very good grip owing to its crinkle coating ideal for dry and wet environments

Support : Knitted - Polyester | Coating : Latex grip textured - Palm coated | Gauge: 10

LA500

Waterproof, mechanical glove up to mid-back with a very good grip owing to its rough coating, ideal for dry and wet environments

Support : Cut and sewn | Material : Cotton | Coating : Latex grip textured - 3/4 Coated | Added knitted cuff

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

 $C \in$

FB149

Highly durable, comfortable to wear, mechanical leather glove,

ideal for dry conditions
Support: Cut and sewn - Grain leather - Cow leather | Sewn open cuff with elastic | Thickness : 1,1 -> 1,3 mm

 $C \in$

51FEDF

Mechanical leather glove, with excellent working properties, ideal for dry conditions

Support : Cut and sewn - Grain leather - Goat leather | Artery protective | Thickness: 0,8 -> 1,0 mm

① Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

GFBLE

Mechanical leather glove, ideal for multipurpose work, ideal in dry environments

Support: Cut and sewn - Grain leather - Cow leather | Artery protective | Thickness: 0,9 -> 1,1 mm

 $\ensuremath{\oplus}$ Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

FBN49

Mechanical leather glove, the American cut prevents the seams from being uncomfortable on the underside of the hand Support : Čut and sewn - Grain leather - Cow leather | Sewn open cuff with elastic | Thickness : 0,9 -> 1,1 mm

Natural 7 → 11

FCN29

Mechanical leather glove, ideal for multipurpose work in dry environments

Support : Cut and sewn - Cow leather | Sewn open cuff with elastic | Thickness : 0,9 -> 1,1 mm

DS202RP

Docker's mechanical glove with palm, thumb and index finger reinforcement, offering full hand protection

Support : Cut and sewn - Split leather - Cow leather | Reinforcements : Palm - Back | Lining : Cotton | Large safety cuff | Thickness: 0,9 -> 1,1 mm

Yellow-Blue

DC103

Docker's mechanical glove, made from upholstery leather Support: Cut and sewn - Split leather - Cow leather | Large safety cuff | Thickness: 0,7 -> 0,9 mm

Black 8 → 11

ATON VV731

Level B, multi-risk, cut-resistant glove with excellent grip, ideal in

Support: Knitted | Material: Aramid | Coating: Latex grip textured - Palm coated | Gauge : 10

⊕ The high-performance HEATnocut fiber provides resistance to contact heat (250° for 15 seconds)

VE726

Mechanical glove with good flexibility for working in oily conditions Support : Knitted - Polyamid - Spandex | Coating : Aqua-polymere smooth - Palm coated | Gauge : 15

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

 $C \in$

VE727

Mechanical glove, with good properties for working and grip in oily conditions

Support : Knitted - Polyamid - Spandex | Coating : Aqua-polymere smooth - Palm coated | Nitrile Dots | Gauge : 15

Grey-Black 7 → 10

⊕ Nitrile means no risk of allergies for users

VE729

Waterproof, mechanical glove up to mid-back, with good working

properties and good grip in oily conditions Support : Knitted - Polyamid - Spandex | Coating : Aqua-polymere smooth - 3/4 Coated | Nitrile Dots | Gauge : 15

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

NI015

Mechanical glove, waterproof up to the mid-back and lightweight for long wearing periods

Support: Cut and sewn | Coating: Nitrile pattern - 3/4 Coated | Added knitted cuff

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

Orange-Blue 7 → 11

VE733

Mechanical glove with a very good grip in wet or dry conditions owing to its eco-friendly coating Support : Knitted - Polyester | Coating : Smooth latex - Palm

coated | Gauge : 13

⊕ Environmentally-friendly thanks to its solvent-free coating

WET & DRY VV636BL

Waterproof, mechanical glove providing smoothness and grip in oily environments

Support : Knitted - Polyamid | Coating : Nitrile double layer - Fully coated except wrist | Gauge : 15

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

VE713

Mechanical glove with high abrasion resistance, ideal for aqueous

Support: Knitted - Polyamid | Coating: Nitrile double layer - 3/4 Coated | Gauge: 13

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

NI170

Waterproof, mechanical glove up to mid-back, suitable for all budgets, ideal for heavy work in oily and greasy environments Support: Cut and sewn | Coating: Nitrile pattern - 3/4 Coated | Large safety cuff

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

 ϵ

NI175

Fully coated, waterproof, mechanical glove, offering back of hand protection

. Support : Cut and sewn | Coating : Nitrile pattern - Fully coated except wrist | Large safety cuff

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

NI150

Mechanical glove, waterproof to the mid-back with increased comfort and breathability

Support : Knitted | Material : Cotton | Coating : Smooth nitrile - 3/4 Coated | Added knitted cuff

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

NI155

Waterproof, mechanical glove, not very sensitive to heat, ideal for heavy work in oily and greasy environments

Support: Cut and sewn | Coating: Nitrile pattern - Fully coated

Support : Cut and sewn | Coating : Nitrile pattern - Fully coated except wrist | Added knitted cuff

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

Beige

FIBKV02

 \oplus The high-performance HEAT nocut fiber provides resistance to contact heat (100°C for 15 seconds)

high durability, ideal for electric arcing Support : Grain leather - Cow leather - Hydro | Lining : Kevlar | Sewn open cuff with elastic | Gauge: 10 | Thickness: 1,0 -> 1,2

FIB49

Water-repellent, mechanical leather glove combining flexibility and durability, ideal for wet conditions Support : Cut and sewn - Grain leather - Cow leather - Hydro | Sewn open cuff with elastic | Thickness : 1,0 -> 1,2 mm

Beige

CBHV2

Water-repellent mechanical leather glove with very good wrist protection provided by its artery guard Support: Cut and sewn - Grain leather - Cow leather - Hydro Artery protective | Thickness : 0,9 -> 1,1 mm

 $\ensuremath{\oplus}$ Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

Yellow-Black

NYSOS VV904

Anti-vibration mechanical glove ideal for heavy duty work owing to its protection against shocks and impacts

Support: Knitted - Polyester | Material: Polyester | Coating: Palm coated | Reinforcements: Finger's back - Thumb - Back | Gauge: 7 | Thickness : 8 mm

① Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

⊕ Flexible reinforcements for added protection against impact and pinching

CHEM D-FINDER

http://gloves.deltaplus.eu

SUPPORTED OR NOT SUPPORTED?

SUPPORTED: WHAT TYPE OF SUPPORT?

Cotton: Natural fibre

 Exceptional comfort - Excellent capacity to absorb moisture - Insulating properties.

Polyamide: Synthetic fibre, also called Nylon

 Resistance to traction and abrasion - Elasticity and shape memory -Washable.

Polyester: Synthetic fibre

 Resistance to traction and abrasion - Possibility to blend with cotton to enhance comfort.

Kevlar®: Para-aramid fibre

• Heat and Cut Resistance - Carbonised between 425° and 475° - Self extinguishing - Softness and high dexterity - Washable.

NON-SUPPORTED:

The mould is dipped directly into the material bath. Thus, the glove is very supple and allows high dexterity.

Different types of non supported gloves:

Flocked (finished with a deposit of cotton particles):

• Pleasant to the touch, limits transpiration and facilitates donning and removal.

Chlorinated (finished by washing the glove in chlorinated water):

• Gives a velvety touch and limits the effects of latex protein allergies.

Different types of disposable glove:

Powdered (finished with a deposit of powder):

• Pleasant to the touch, limits transpiration and facilitates donning and removal.

Non powdered (finished by washing the glove in chlorinated water):

• Protects the handled objects while maintaining very good comfort.

MATERIALS

GENERAL FEATURES	Polyurethane	Latex	Nitrile	Neoprene	PVC
Abrasion	•••	••	•••	••	•••
Cutting	••	••	••	••	••
Perforation	••	•••	•••	•	•
Tearing	•••	••	•••	•	••
Elasticity / Flexibility / Dexterity	•••	•••	•	••	•
Degradation (heat contact, UV,)	•••	•	••	•••	•••
Risks of allergy	•	•••	•	•	•
Cold environment	••	•••	• (-40°C)	•••	•••
Warm environment	••	•••	••	•••	• (>80°c)
Oily / greasy environment	•	•	•••	•••	•••

CHEMICAL PRODUCT FAMILY	Latex	Nitrile	Neoprene	PVC	
Acetates	Acetate of ethyl (I)	-	••	••	•
Acids	Sulfuric acid (L),	•••	••	•••	•••
Primary alcohol	Methanol (A)	•••	•••	•••	••
Aldehydes (Alcohols & Ketones)	Formaldehyde 37% (T),	••		•	•
Amine	Diethylamine (G),	-	•	-	-
Bases (Lime, Sodium hydroxide)	Caustic soda (K),	•••	••	•••	•••
Ketone and ketone solvents	Acetone (B)	•••	-	•	•
Ether	Tetrahydrofuran (H)	-	-	-	-
Hydrocarbons and derivatives	Acetonitrile (C), n-Heptane (J),	-	•••	•••	••
Aromatic solvents (styrene)	Toluene (F), Xylene	-	•••	•	•
Chlorinated solvents	Dichloromethane (D)	-	•••	•	-
Aqueous solutions		•••	•••	•••	•••

-: Not recommended •: Low ••: Good •••: Very good

Green 8 → 11

VV835CUT

⊕ The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

Chemical glove combining comfort of use and prolonged use

Support : Polyamid | Coating : Triple coating nitrile foam - Fully coated | Gauge : 18 | Thickness : 1,15 mm | Length : 350 mm

Level C cut-resistant chemical glove, combining high visibility,

Gauge: 18 | Thickness: 1,7 mm | Length: 340 mm

comfort of use and prolonged use with hydrocarbons.

Support: Glass Fiber - PEHD - Polyamid | Coating: Fully coated |

CHEMSAFE VV835

against hydrocarbons

during prolonged use

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

CHEMSAFE PLUS VV836

① Longer service life thanks to a double coating for excellent abrasion resistance

Chemical glove offering a very good grip on objects handled

Support : Polyamid | Coating : Nitrile PVC double layer - Fully coated | Gauge : 18 | Thickness : 1 mm | Length : 300 mm

CHEMSAFE PLUS WINTER VV83760×

Chemical glove, resistant to cold, offering a very good grip on

Support : Acrylic | Coating : Nitrile PVC double layer - Fully coated | Rolled Cuff | Gauge : 10 | Length : 300 mm

objects handled during prolonged use

 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

PETRO VE766

Chemical glove combining comfort, full arm protection, good grip on objects handled for resistance to oils and hydrocarbons Support: Cotton | Coating: PVC grip textured - Fully coated | Gauge: 13 | Thickness: 1,30 mm | Length: 620 mm

⊕ Extra thick and long for extra protection of the entire arm

PETRO VE780

Chemical glove with good grip on objects handled and resistance to oils and hydrocarbons
Support: Cotton | Coating: PVC grip textured - Fully coated |
Gauge: 13 | Thickness: 1,30 mm | Length: 300 mm

Blue 8 → 10

 \oplus Extra thick and long for extra protection of the entire arm

Red

PVCC400

 \oplus Extra thick and long for extra protection of the entire arm

Chemical glove protecting the forearm from oils and hydrocarbons in prolonged use Support: Cotton | Coating: pvc smooth - Fully coated | Thickness: 1,20 -> 1,40 mm | Length: 400 mm

PVCC600

hydrocarbons in prolonged use

Support : Cotton | Coating : pvc smooth - Fully coated | Thickness : 1,20 mm | Length : 600 mm

Chemical glove protecting the entire arm from oils and

 \oplus Extra thick and long for extra protection of the entire arm

PVC7335

Support : Cotton | Coating : pvc smooth - Fully coated | Thickness : 0,90 mm | Length : 350 mm

Chemical glove, offering full forearm protection against oil and

hydrocarbon splashes in prolonged use

 \oplus Extra thick and long for extra protection of the entire arm

PVCGRIP35

Chemical glove combining comfort, full arm protection, good grip on objects handled for resistance to oils and hydrocarbons Support: Cotton | Coating: PVC double layer - Fully coated | Thickness: 0,90 mm | Length: 350 mm

⊕ Reduces perspiration thanks to its excellent breathability

TOUTRAVO VE509

Chemical glove with good grip for all types of applications Support : Cotton | Coating : Neoprene pattern - Fully coated -Flocked | Thickness : 0,75 mm | Length : 300 mm

⊕ Extra thick and long for extra protection of the entire arm

TOUTRAVO VE510

Chemical glove protecting the forearm, has a good grip on handled objects for all types of applications

Coating: Neoprene smooth - Fully coated - Flocked | Thickness: 0,78 mm | Length: 380 mm

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

TOUTRAVO VE511

Chemical glove, protecting the forearm, offering comfort with its knitted fabric and providing a good grip on the handled objects, for all types of applications.

Support : Cotton | Coating : Neoprene smooth - Fully coated | Gauge: 10 | Thickness: 1,40 mm | Length: 380 mm

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

NEOCOLOR VE530

Chemical glove, combining comfort and flexibility, ideal for the

Coating: Double layer latex/neoprene - Fully coated - Flocked | Thickness: 0,70 mm | Length: 300 mm

⊕ Extra thick and long for extra protection of the entire arm

Blue 6 → 11

VENIZETTE VE920

Length: 300 mm

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

Very comfortable multi-standard chemical glove with a very rough

Coating: Latex grip textured - Fully coated | Thickness: 1,8 mm |

Multi-standard chemical glove for comfort and durability, ideal for the food industry Coating : Smooth latex - Fully coated | Thickness : 1,25 mm |

VENIFISH VE990

Length: 300 mm

palm for excellent grip when handling acids

palm for excellent grip when handling acids

 \oplus High-quality coating extends the life of the glove and provides excellent protection for the hand

. Coating : Latex grip textured - Fully coated | Thickness : 1,80 mm



Green

LAT50

| Length : 300 mm

CE

NITREX VE802

Chemical glove with good resistance to chemicals and viruses, ideal for pesticides Coating: Nitrile pattern - Fully coated - Flocked | Thickness: 0,38

mm | Length: 330 mm

⊕ High-quality coating extends the life of the glove and provides excellent protection for the hand

NITREX VE803

Chemical glove, combining comfort and durability, ideal for dealing with hydrocarbons

Coating: Smooth nitrile - Fully coated | Thickness: 0,85 mm | Length: 330 mm

⊕ The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

NITREX VE846

Chemical glove for forearm protection, combining comfort and durability, ideal for the food industry

Coating: Smooth nitrile - Fully coated - Powder free | Thickness:

0,55 mm | Length: 460 mm

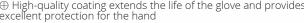
 \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

Type B



NITREX VE801

Chemical glove, leaving no trace on objects because of the absence of silicone, ideal for handling pesticides Coating: Smooth nitrile - Fully coated - Flocked | Thickness: 0,40 mm | Length: 330 mm



 \oplus The nitrile coating gives people working in oily/greasy

environments an excellent grip on the objects they handle

NITREX VE830

Very comfortable chemical glove, ideal for the food industry Coating: Smooth nitrile - Fully coated - Powder free | Thickness: 0,20 mm | Length : 330 mm

 \oplus Chlorinated interior for easy glove donning \oplus The nitrile coating gives people working in oily/greasy environments an excellent grip on the objects they handle

Black 10 → 11

LA600

length, ideal for handling acids Coating : Smooth latex - Fully coated - Powder free | Thickness :

⊕ Extra thick and long for extra protection of the entire arm

Thick chemical glove, ideal for heavy handling

VENIPRO VE450

| Length : 300 mm

1,15 mm | Length : 600 mm

Coating: Latex pattern - Fully coated - Flocked | Thickness: 1 mm

⊕ Lightweight for optimal dexterity

VE440

⊕ EN ISO 374-5

Chemical glove ideal for handling mildly aggressive products Coating: Smooth latex - Fully coated - Powder free | Thickness:

Chemical glove for handling acids, ideal for the food industry

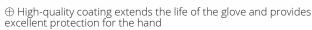
Coating: Latex grip textured - Fully coated - Flocked | Thickness:

⊕ Lightweight for optimal dexterity

0,55 mm | Length : 320 mm

ALPHA VE905

0,40 mm | Length : 300 mm



⊕ Chlorinated interior for easy glove donning

DUOCOLOR VE330

Chemical glove, ideal for handling chemicals and micro-organisms Coating : Latex double layer - Fully coated - Flocked | Thickness : 0,60 mm | Length: 300 mm

⊕ Lightweight for optimal dexterity

PICAFLOR VE240

Chemical glove, ideal for the food industry Coating : Latex pattern - Fully coated - Flocked | Thickness : 0,38 mm | Length : 300 mm

ZEPHIR VE210

Chemical glove, resistant to less aggressive products, ideal for the food industry

Coating: Latex pattern - Fully coated - Flocked | Thickness: 0,38 mm | Length : 300 mm

Disposable

VENIPLUS V1500

0,17 mm | Length : 270 mm

(>30min) and viruses

Thick, disposable chemical glove with resistance to chemicals

Coating: Smooth nitrile - Fully coated - Powder free | Thickness:

⊕ Lightweight for optimal dexterity

VENITACTYL V1450B100

0,17 mm | Length : 270 mm

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

Disposable chemical glove with good resistance to chemicals and viruses, ideal for the food industry Coating: Smooth nitrile - Fully coated - Powder free | Thickness:

VENITACTYL V1400B100

Highly resistant disposable chemical glove, ideal for the food

Coating: Smooth nitrile - Fully coated - Powder free | Thickness: 0,10 mm

 $\ensuremath{\oplus}$ Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VENITACTYL V1400PB100

Highly resistant powdered disposable chemical glove, ideal for the

food industry Coating: Smooth nitrile - Fully coated - Powdered | Thickness: 0,10 mm

① Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VENITACTYL V1310

Disposable chemical glove, providing protection against mild chemicals and viruses, ideal for the food industry Coating: Smooth latex - Fully coated - Powdered

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VENICLEAN V1340

Disposable chemical glove with chlorinated inner lining, ideal for use with less aggressive products in the food industry Coating: Smooth latex - Fully coated - Powder free

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

VENITACTYL V1371

Chemical glove, ideal for the food industry Coating: pvc smooth - Fully coated - Powdered

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

Thermal cold works

VV736CUT

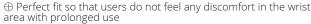
Waterproof, multi-standard, cut-resistant level D glove for intensive cold work.

Support : Knitted | Material : Glass Fiber - PEHD | Coating : Nitrile double layer - Fully coated except wrist | Gauge : 15

⊕ Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

① Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

THRYM VV736



Waterproof, multi-standard glove with a fine grip for intensive cold work

Support : Knitted | Material : Polyamid - Acrylic | Coating : Latex double layer - Fully coated except wrist | Gauge: 10

① Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

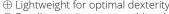
Fluorescent yellow-Black 8 → 11 _

APOLLON WINTER CUT VV737

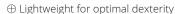
Level E cut-resistant thermal glove, ideal for extreme cold environments

Support: Knitted - Acrylic - PEHD | Coating: Latex foam - Palm coated | Gauge: 10

 \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C



Fluorescent yellow-Black


APOLLON WINTER VV735

Thermal glove ideal for mild cold environments Support: Knitted - Acrylic | Coating: Latex foam - Palm coated | Gauge: 10

 \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

Thermal glove, resistant to moisture and cold for guaranteed comfort even during prolonged use Support : Cut and sewn | Material : Polyester | Coating : PU -

Palm coated | Reinforcements : Thumb - Thumb-index | Velcro

⊕ Hook-and-loop fastener for better wrist support ① Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

HERCULE VV750

Waterproof, thermal glove up to mid-back, providing comfort and warmth retention for applications in extreme cold environments Support: Knitted - Acrylic - Polyamid | Coating: Nitrile foam - 3/4 Coated | Gauge: 7

Black 9 → 10

Grey-Black 7 → 11

 \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

VE728

Thermal tactile glove with a good grip on objects handled in slightly cold environments

Support : Knitted - Acrylic - Polyester | Coating : Nitrile foam -Palm coated | Nitrile Dots | Gauge : 13

- ⊕ Tactile, so you can use your tablet or smartphone without removing your gloves
- \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

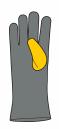
LEATHER GLOVES

AMERICAN ASSEMBLY

Side palm, middle and ring finger form a single piece that is sewn separately to the rest of the palm

Long wrist or cuff

Docker type


Latex wrist with vein protection

FOURCHETTE ASSEMBLY

Wing thumb

The thumb is sewn separately (thumb added). A strip of material is sewn between each finger (fourchette). The glove perfectly matches the shape of the hand.

Round thumb Gusset on fingers

Choy thumb

THE BEN	EFIT OF LEATHER	Leather type	Abrasion	Durability	Flexibility	Price
	 Light High breathability due to porous texture Price Good abrasion resistance Tends to become softer and more flexible after use 	Grain	5	3	4	**
4	Good durability	Grain	2	4	3	***
	Good insulation protection especially against heatHigh puncture resistance	Split leather	2	4	2	*
	Good feel touchGood abrasion and puncture resistanceGood flexibilityGood durability	Grain	3	4	4	***

CHOOSE THE BEST GLOVE FOR COLD ENVIRONMENTS

Extremely cold conditions

• Very light activity levels or special applications requiring extra heat

Very cold conditions

• Levels of light activity where the wearer generates little body heat by activity

Fresh climate

• Conditions when light heat is needed

FBF50

Thermal leather glove, combining resistance to moisture and cold, increased durability and comfort in low-intensity cold environments

Support : Cut and sewn - Grain leather - Cow leather | Sewn open cuff with elastic | Thickness: 0,9 -> 1,1 mm

 \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

x 60

FBF15

Thermal leather glove, ideal in cold environments thanks to the fur inside the glove

Support: Cut and sewn - Grain leather - Cow leather | Lining: Polyester | Fleece lined cuff | Thickness: 1,0 -> 1,2 mm

 \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

EN 511

Moisture and cold resistant thermal leather glove, ideal for extreme cold environments

Support : Cut and sewn - Split leather - Cow leather | Large safety cuff | Thickness : 1,0 -> 1,2 mm

 \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

Thermal welding works

Orange-Grey 10

heat, ideal for work in heavy industry Support : Cut and sewn - Split leather - Cow leather | Aluminised cuff | Length : 400 mm

 \oplus Resistant to flame, heat and large splashes of molten metal, ideal for welding and heat protection applications

EN 12477 Type A

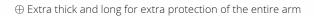
TER300

Reinforced thermal leather glove, providing increased heat resistance for heavy duty work

Support : Cut and sewn - Cotton - Split leather - Cow leather | Reinforcements : Palm - Thumb - Thumb-index | Lining : Cotton | Leather cuff | Thickness: 1,2 mm | Length: 400 mm

Thermal leather glove ideal for heavy duty work, ideal in extreme Support: Cut and sewn - Split leather - Cow leather | Leather cuff

Brown-Grey


TER250

EN 12477

| Thickness: 1,2 -> 1,4 mm | Length: 400 mm


Grey 9 → 11

TC716

| Length : 350 mm

⊕ The high-performance HEATnocut fiber provides resistance to contact heat (100°C for 15 seconds)

Support : Cut and sewn - Split leather - Cow leather | Leather cuff

Thermal leather glove, ideal for welding work in heavy industry Support: Cut and sewn - Cow leather | Leather cuff | Thickness: 0,9 mm | Length: 350 mm

GFA115K

Thermal leather glove, combining great flexibility and finesse for welding work in heavy industry

Support : Cut and sewn - Grain leather - Goat leather | Leather cuff | Thickness : 0,7 -> 0,9 mm | Length : 350 mm

EN 12477 Type B

TIG15K

FC115

Thermal leather glove, combining great flexibility and finesse for welding work in heavy industry

Support : Cut and sewn - Grain leather - Goat leather | Leather cuff | Thickness : 0,8 -> 1,0 mm | Length : 350 mm

Grey

EN 12477 Type A

CA515R

Thermal leather glove, suitable for welding work owing to its resistance to contact heat

Support: Cut and sewn - Split leather - Cow leather | Leather cuff | Thickness: 1,2 -> 1,4 mm | Length: 350 mm

Red

EN 12477 Type A

CA615K

Thermal leather glove, offers increased durability in the heavy industry

Support : Cut and sewn - Split leather - Cow leather | Leather cuff | Thickness : 1,2 -> 1,4 mm | Length : 350 mm

Red

Thermal protection

Yellow

TERK500 XTREM HEAT

Level E cut-resistant reinforced thermal glove, ideal for extreme

EN 407
44424X

 \oplus The high-performance HEAT nocut fiber provides resistance to contact heat (500°C for 15 seconds)

Support: Cut and sewn | Leather cuff | Length: 360 mm

KPG10

heat environments

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

 \oplus The high-performance HEAT nocut fiber provides resistance to contact heat (250° for 15 seconds)

KCA15

Level D cut-resistant thermal glove, combining thermal resistance, increased durability and finesse, ideal for use in hot environments Support : Knitted - Aramid - Cotton | Leather cuff | Gauge : 7 | Thickness : 1,2 -> 1,4 mm

 \oplus Perfect fit so that users do not feel any discomfort in the wrist area with prolonged use

⊕ The high-performance HEATnocut fiber provides resistance to contact heat (250° for 15 seconds)

CRYOG

Thermal, cryogenic leather glove, combining flexibility, increased

durability and comfort Support: Cut and sewn - Grain leather - Cow leather - Hydro | Lining: Synthetical | Large safety cuff | Thickness: 1,1 -> 1,3 mm | Length: 400 mm

 \oplus Excellent resistance to cold and humidity, ideal for cold environments down to -30°C

Level E cut-resistant thermal glove, providing protection against electric arcs, suitable for use in all types of environments Support: Knitted - Aramid - Glass Fiber | Coating: Neoprene foam - Palm coated | Gauge: 10

 \oplus The high-performance HEAT nocut fiber provides resistance to contact heat (250° for 15 seconds)

Ma DIY

CUTTING WORKS DPVECUTD09 9 - 10 - 11

LIGHT CUTTING WORKS DPVECUTB04

AGILITY DPVE702PG 6-7-8-9-10

CONSTRUCTION DPVE730

TOOL HANDLING DPFBN49

8-9-10-11

WELDING DPTC715

LIGHT HANDLING DPDC103 10

GARDENING

LITTLE GARDENER DPVV733EVL 8/10 years

BALCONY AND TERRACE DPVV733VL

SPECIAL HARVEST DPVE715 7 - 9

MULTI PURPOSE DPVE716 7 - 9 - 10

PLANTING DPVE450 8/9 - 10/11

ROSEBUSH DPVV831 7 - 8 - 9 - 10

MULTI PURPOSE

MULTI PURPOSE WINTER WORKS DPVV736 7 - 8 - 9 - 10

WINTER WORKS VV903 7 - 9 - 11

EXTRA GRIP WINTER DPVE728 7 - 8 - 9 - 10

INTENSIVE WINTER WORKS VV913 8 - 9 - 10 - 11

INTENSIVE WORKS VV910 8 - 9 - 10 - 11

MULTI PURPOSE VV900 8 - 9 - 10 - 11 - 12

LIGHT WORKS VV901

GENERAL HANDLING DPVV733JA 7 - 8 - 9 - 10

GENERAL HANDLING DPVV733OR 7 - 8 - 9 - 10

EXTRA GRIP DPVE727 7 - 8 - 9 - 10

SECOND WORK DPVE724RO 7 - 8 - 9 - 10 - 11

WET ENVIRONMENT DPVE712GR 7 - 8 -9 - 10 - 11

PAINTING DPVE702P

FINISHING OFF DPV1371 7/8 - 9/10

DIY - PACK OF GLOVES

THORN BUSH DPLAT50 7/8 - 9/10

GARDENING GLOVES DPVE733 7 - 8 - 9 - 10

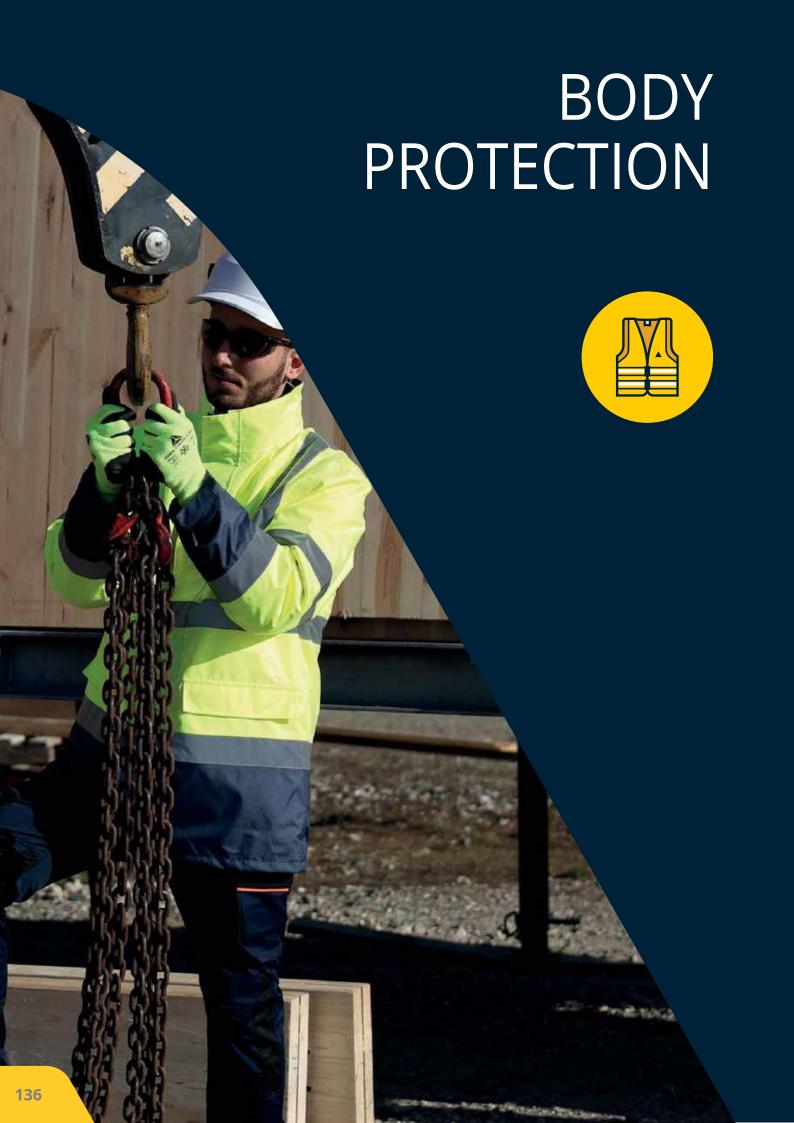
VE702PGS 6/11

VE712GRG10 9/10

VE702PNG12 8/9/10/11

HEAVY DUTY VV902 10 - 11

ANTI VIBRATIONS VV904 10 - 11



CARPENTER VV905 7 - 8 - 9 - 10 - 11

WATERPROOF DPCBHV2 8 - 10

Workwear

Mach Originals	141
Mach 5	142
Mach Corporate	144
Mach 2	146
Palaos	151
Mach 1	152
Panostyle	154
Caps - Belts - Kneepads	158

Outdoor wear

Parkas and bombers jackets	161
Bodywarmers	169
Polars - Softshell - Sweats - Pull-over	172
Rain	180
Caps - Hoods - Gloves	184

Technical wear

Outdoor high visibility	188
High Visibility Workwear	193
Chill Room and Cold Store	197
Chemical resistant - Flame retardant - Antistatic	198
Flame retardant - Antistatic	199
Welders	201
Protective aprons	202
Work with prolonged chemical resistance	203

Disposable wear

Chemical protection overalls	206
Overalls - Coats - Aprons - Headwear	209
Masks - Sleeves - Overshoes	211

enjoy safety.

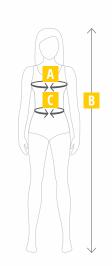
CHOOSE YOUR PRODUCT ACCORDING TO YOUR WORKING ENVIRONMENT

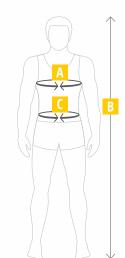
Ranges (€	Cut		À		
					_
Palaos	LOOSE	Twill 100% cotton	200		S> 3XL
Boundale	LOOSE	Twill 65% polyester 35% cotton	235		XS> 3XL
Panostyle	REGULAR	Twill 63% polyester 34% cotton 3% elastane	240	• •	XS> 3XL
Mach1	LOOSE	Twill 65% polyester 35% cotton	235	Only the pants),	XS> 3XL XS> 5XL For ●
	REGULAR	Twill 65% polyester 35% cotton	245		S> 3XL S> 5XL For ●
Mach2	REGULAR	Twill 100% cotton	195	•	S> 5XL
	ADJUSTED	Twill 63% polyester 34% cotton 3% elastane	260	Only the pants	S> 3XL S> 5XL For
Mach2	REGULAR	Twill 65% polyester 35% cotton	245	•	XS> 3XL
Female Version	ADJUSTED	Twill 63% polyester 34% cotton 3% elastane	260	•	XS> 3XL
		Canvas Ripstop 65% polyester 35% cotton	260 MCCO2	MCC02	
Mach Corporate	REGULAR	Canvas 65% polyester 35% cotton	245 MCCDZ+MCCOM	MCCDZ MCCOM	S> 3XL
	ADJUSTED	Canvas Ripstop 64% polyester 34% cotton 2% elastane	275	••	S> 3XL
	LOOSE	Canvas 60% cotton 40% polyester. Yokes: Cordura® and Oxford polyester.	270	• •	S> 3XL
Mach5	REGULAR	Canvas 60% cotton 40% polyester. Canvas 95% polyamide 5% elastane. Yokes: Cordura® and Oxford polyester.	290	••	S> 3XL S> 5XL For
Mach Originals	LOOSE	Canvas 97% cotton 3% elastane. Yokes : Cordura®.	290	• •	S> 3XL
Mach Spring	LOOSE	Twill 65% polyester 35% cotton	245	•	S> 3XL
— Mach Spring	REGULAR	Twill 65% polyester 35% cotton	195		S> 3XL

Tshirt/Polos

BALI

TI	TROUSERS		TROUSERS JACKETS			BERMUDAS VESTS			ESTS	DU	NGAREES	OVERALLS		
Λ	PALIGPA EN ISO 13688	A	PALIGVE EN ISO 13688											
Λ	M6PAN EN ISO 13688 EN14404	A	M6VES EN ISO 13688		M6BER EN ISO 13688		M6GIL EN ISO 13688	M	M6SAL EN ISO 13688 EN14404	7	M6COM EN ISO 13688 EN14404			
M	PANOSTRPA EN ISO 13688													
N	M1PA2 EN ISO 13688 EN14404		M1VE2 EN ISO 13688		M1BE2 EN ISO 13688		M1GI2 EN ISO 13688	M	M1SA2 EN ISO 13688 EN14404	1	M1CO2 EN ISO 13688 EN14404			
1	M2PA3 EN ISO 13688 EN14404	A	M2VE3 EN ISO 13688		M2BE3 EN ISO 13688		M2GI3 EN ISO 13688	Ä	M2SA3 EN ISO 13688 EN14404	1	M2CO3 EN ISO 13688 EN14404 M2CZ3 EN ISO 13688			
	M2LPA3 EN ISO 13688 EN14404													
	M2PA3STR EN ISO 13688 EN14404			A	M2BE3STR EN ISO 13688			Ä	M2SA3STR EN ISO 13688 EN14404					
(1	M2PA3F EN ISO 13688 EN14404													
(1	M2PA3STRF EN ISO 13688 EN14404													
n	MCPA2 EN ISO 13688 EN14404	A	MCVE2 EN ISO 13688					ħ	MCSA2 EN ISO 13688 EN14404	7	MCCO2 EN ISO 13688 - EN14 MCCDZ EN ISO 13688 MCCCOM EN ISO 13688 - EN14			
n	MCPA2STR EN ISO 13688 EN14404													
N	M5PA3 EN ISO 13688 EN14404		M5VE3 EN ISO 13688					Ä	M5SA3 EN ISO 13688 EN14404					
1	M5PA3STR EN ISO 13688 EN14404			A	M5BE3STR EN ISO 13688									
N	MOPA2 EN ISO 13688 EN14404						MOGI2 EN ISO 13688							
N	M5SPA EN ISO 13688 EN14404						M5SGI EN ISO 13688							
A	MSLPA EN ISO 13688 EN14404													


SIZES


Order the right size by taking the correct measurements.

To take the correct measurements, take the measurements directly on the body, without tightening.

I.E.:

- the measurements outlined in the tables are for the **body**, not the garment.
- for wearing a garment over another, the width required is provided.

Chest measurement A

Height B

Waist measurement C

SIZE EQUIVALENCE TABLE

MALE	В	XS 156/164	s 156/164	M 164/172	L 172/180	XL 180/188	XXL 188/196	3XL 196/204	4XL 196-204	5XL 196-204
JACKET / BOMBER /	FR	42/44	46/48	48/50	52/54	54/56	58/60	60/62	64/66	66/68
BODYWARMER / OVERAL	IT	46/48	50/52	52/54	56/58	58/60	62/64	64/66	68/70	70/72
Chest	cm	88/94	94/100	100/106	106/112	112/118	118/124	124/130	130/136	136/142
measurement A	inch	341/2/37	37/39	39/411/2	411/2/44	44/461/2	461/2 /48	48/51	51/531/2	531/2/56
TROUSERS /	FR	32/34	34/36	38/40	42/44	46/48	50/52	54/56	58/60	62/64
DUNGAREES / BERMUDA	IT	36/38	38/40	42/44	46/48	50/52	54/56	58/60	62/64	66/68
Waist measurement	cm	36/38	38/40	42/44	46/48	50/52	54/56	58/60	62/64	66/70
C	inch	23/26	26/29	29/32	32/351/2	351/2/381/2	381/2/411/2	411/2/46	46/50	50/55
TEE-SHIRT A	cm	76/79	80/88	89/97	98/106	107/115	116/124	125/133	134/142	144/152

FEMALE	В	XS 156/164	s 156/164	M 164/172	L 172/180	XL 180/188	XXL 180/188	3XL 180/188
JACKET /	FR	34/36	36/38	38/40	42/44	46/48	50/52	54/56
BOMBER / BODYWARMER / OVERAL	IT	38/40	40/42	42/44	46/48	50/52	54/56	58/60
Chest	cm	70/74	74/78	78/82	82/86	86/90	90/94	94/98
Measurement A	inch	271/2/29	29/31	31/32	32/34	34/35 ^{1/2}	351/2 /37	37/381/2
TROUSERS /	EU	34/36	36/38	38/40	42/44	46/48	50/52	54/56
DUNGAREES / BERMUDA	IT	38/40	40/42	42/44	46/48	50/52	54/56	58/60
Waist measurement	cm	66/72	72/78	78/84	84/90	90/96	96/102	102/108
С	inch	26/28	28/31	31/33	33/351/2	35 ^{1/2} /38	38/40	40/421/2

((

MOPA2

Loose-fitting stretch work trousers, with knee pads and multipockets, combining durability, functionality and great freedom of movement

Cut : Loose | Material : Canvas 97% Cotton 3% Elastane 290 g/m² | Preformed knees | Number of pockets : 10

⊕ CORDURA® reinforcements for optimum abrasion resistance

 ϵ

MOGI2

Multi-pocket, stretch work vest combining durability, functionality

and great freedom of movement Material : Canvas 97% Cotton 3% Elastane 290 g/m² | Number of pockets : 10

⊕ CORDURA® reinforcements for optimum abrasion resistance

M5PA3STR

Stretch work trousers with a regular cut, resistant for kneeling work in aggressive environments, allowing great freedom of movement

Cut : Regular | Material : Canvas 60% Cotton 40% Polyester 280 g/m² - Canvas 95% Polyamid 5% Elastane 280 g/m² - Canvas 100% Polyamid PU coating 240 g/m² | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets : 10

⊕ CORDURA® reinforcements for optimum abrasion resistance

Grey-Black S → 5XL

M5PA3

Loose-fitting, hard-wearing work trousers for kneeling work in

aggressive environments
Cut: Loose | Material: Canvas 60% Cotton 40% Polyester
280 g/m² - Canvas 100% Polyamid PU coating 240 g/m² | Seams:
Triple seams | Waist: Elasticated sides | Preformed knees | Number of pockets: 10

⊕ CORDURA® reinforcements for optimum abrasion resistance

Workwear Mach 5

 $C \in$

M5BE3STR

Stretch work shorts with a regular fit, allowing great freedom of

Cut : Adjusted | Material : Canvas 60% Cotton 40% Polyester 280 g/m² - Canvas 95% Polyamid 5% Elastane 290 g/m² | Seams : Triple seams | Number of pockets: 9

 \oplus 4-way stretch for total freedom of movement

M5SA3

Loose-fitting, hard-wearing dungarees for kneeling work in

aggressive environments
Cut: Loose | Material: Canvas 60% Cotton 40% Polyester
280 g/m² - Canvas 100% Polyamid PU coating 240 g/m² | Seams: Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets: 12

Grey-Black S → 5XL

 \oplus CORDURA® reinforcements for optimum abrasion resistance

Durable work jacket particularly suitable for work in aggressive environments

Material : Canvas 60% Cotton 40% Polyester 280 g/m² - Canvas 100% Polyamid PU coating 240 g/m² | Number of pockets : 7

 \oplus CORDURA® reinforcements for optimum abrasion resistance

MCPA2STR

EN14404 Type 2 Level 0

Tight fit, multi-pocket, stretch work trousers combining style, durability, functionality and great freedom of movement Cut : Adjusted | Material : Canvas Ripstop 64% Polyester 34% Cotton 2% Elastane 275 g/m² | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets : 15

⊕ Ripstop fabric to prevent tearing

MCPA2

Regular fit, multi-pocket work trousers combining style, durability and functionality

Cut : Regular | Material : Canvas Ripstop 65% Polyester 35% Cotton 260 g/m² | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets: 15

⊕ Ripstop fabric to prevent tearing

Regular fit multi-pocket dungarees combining style, durability and functionality

Cut: Regular | Material: Canvas Ripstop 65% Polyester 35% Cotton 260 g/m² | Seams : Triple seams | Preformed knees | Number of pockets: 11

 \oplus Ripstop fabric to prevent tearing

MCCO₂

Multi-pocket, regular fit overalls combining style, durability and functionality

Cut : Regular | Material : Canvas Ripstop 65% Polyester 35% Cotton 260 g/m² | Seams : Triple seams | Waist : Elastic back | Number of pockets : 13

 \oplus Ripstop fabric to prevent tearing

 ϵ

MCCOM

Lightweight, durable, regular-fit, overalls suitable for most uses Cut : Regular | Material : Twill 65% Polyester 35% Cotton 245 g/m² | Waist : Elastic back | Number of pockets : 11

 ϵ

MCCDZ

Lightweight, durable, regular-fit, double-zip overalls suitable for most uses

Cut : Regular | Material : Twill 65% Polyester 35% Cotton 245 g/m² | Waist : Elastic back | Number of pockets : 7

 $C \in$

MCVE2

Multi-pocket work jacket combining style, durability and functionality

Material : Canvas Ripstop 65% Polyester 35% Cotton 260 g/m² | Number of pockets : 8

 \oplus Ripstop fabric to prevent tearing

Navy blue-Black S → 3XL

Grey-Orange S → 5XL

M2PA3STR

Stretch work trousers with a tight fit combining lightness, resistance and great freedom of movement suitable for most uses Cut : Adjusted | Material : Twill 63% Cotton 34% Elastane 3% Polyester - 260 g/m² | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets: 9

⊕ Triple stitching to reduce the risk of tearing

M2PA3

EN14404 Type 2 Level 0

Regular fit work trousers combining warmth, lightness and resistance, suitable for most uses Cut : Regular | Material : Twill 65% Polyester 35% Cotton 245 g/m² | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets : 9

⊕ Triple stitching to reduce the risk of tearing

M2PW3

EN14404 Type 2 Level 0

Regular fit work trousers with 100% cotton flannel lining, combining warmth, lightness and resistance, suitable for most uses

Cut : Regular | Material : Twill 65% Polyester 35% Cotton 245 g/m² | lining : 100% cotton | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets : 7

⊕ Triple stitching to reduce the risk of tearing

M2PA3STRF

Women's cut stretch work trousers with a tight fit combining lightness, resistance and great freedom of movement suitable for most uses

Cut : Adjusted | Material : Twill 63% Polyester 34% Cotton 3% Elastane 260 g/m² | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets : 9

⊕ Triple stitching to reduce the risk of tearing

 ϵ

EN14404 Type 2 Level 0

M2PA3F

Women's cut regular fit work trousers combining warmth, lightness and resistance, suitable for most uses Cut: Regular | Material: Twill 65% Polyester 35% Cotton 245 g/m² | Waist: Elasticated sides | Preformed knees | Number of pockets: 9

 \oplus Triple stitching to reduce the risk of tearing

EN14404 Type 2 Level 0

M2LPA3

Lightweight, regular fit cotton work trousers for the spring/ summer season, suitable for most uses
Cut: Regular | Material: Canvas 100% Cotton 195 g/m² - Twill 65% Cotton 35% Polyester 245 g/m² | Seams: Triple seams | Waist: Elasticated sides | Preformed knees | Number of pockets: 9

 \oplus Triple stitching to reduce the risk of tearing

M2BE3STR

Stretch work shorts with a tight fit combining lightness, resistance and great freedom of movement suitable for most uses Cut : Adjusted | Material : Twill 63% Polyester 34% Cotton 3% Elastané 260 g/m² | Seams : Triple seams | Waist : Elasticated sides | Number of pockets: 7

⊕ Stretch fabric for freedom of movement

Gris oscuro-Amarillo S → 5XL

M2BE3

Lightweight and durable regular fit work shorts suitable for most

Cut : Regular | Material : Twill 65% Polyester 35% Cotton 245 g/m² | Seams : Triple seams | Waist : Elasticated sides | Number of pockets : 7

① Can be combined with all garments in the range of the same name

M2SA3STR

EN14404 Type 2 Level 0

Stretch dungarees with a tight fit combining lightness, resistance and great freedom of movement suitable for most uses
Cut: Adjusted | Material: Twill 63% Polyester 34% Cotton 3%
Elastane 260 g/m² | Seams: Triple seams | Preformed knees |
Number of pockets: 12

⊕ Triple stitching to reduce the risk of tearing

C EEN14404
Type 2
Level 0

x 10

M2SA3

Overalls with regular-fit combining lightweight and resistance, suitable for most uses $% \left\{ 1,2,\ldots ,2,\ldots \right\}$

Cut: Regular | Material: Twill 65% Polyester 35% Cotton 245 g/m² | Seams: Triple seams | Preformed knees | Number of pockets: 12

⊕ Triple stitching to reduce the risk of tearing

C EEN14404
Type 2
Level 0

M2CO3

Lightweight, durable, regular-fit, overalls suitable for most uses Cut: Regular | Material: Twill 65% Polyester 35% Cotton 245 g/m² | Seams: Triple seams | Waist: Elastic back | Preformed knees | Number of pockets: 11

 \oplus Triple stitching to reduce the risk of tearing

 $C \in$

M2CZ3

Lightweight, durable, regular-fit, double-zip overalls suitable for most uses

Cut : Regular | Material : Twill 65% Polyester 35% Cotton 245 g/m² | Seams : Triple seams | Waist : Elastic back | Number of pockets : 9

⊕ Triple stitching to reduce the risk of tearing

Grey-Orange S → 3XL

Lightweight, durable work jacket suitable for most uses Material : Twill 65% Polyester 35% Cotton 245 g/m² | Number of pockets : 7

① Can be combined with all garments in the range of the same

Navy blue-Royal blue S → 3XL

Navy blue-Royal blue S → 3XL

M2GI3

Lightweight, durable work vest suitable for most uses Material : Twill 65% Polyester 35% Cotton 245 g/m² | Number of pockets : 11

 $\ensuremath{\oplus}$ Can be combined with all garments in the range of the same name

Palaos Workwear

 $C \in$

PALIGPA

Lightweight, loose-fitting universal work trousers for the spring/summer season $\,$

Cut : Loose | Material : Twill 100% Cotton 200 g/m² | Waist : Elasticated sides | Number of pockets : 5

 \oplus Can be combined with all garments in the range of the same name

 ϵ

PALIGVE

Lightweight universal work jacket for the spring/summer season Material : Twill 100% Cotton 200 g/m² | Number of pockets : 3

 $\ensuremath{\oplus}$ Can be combined with all garments in the range of the same name

MSLPA

Lightweight regular-fit cotton work trousers for the spring/ summer season, hard-wearing for work on the knees in aggressive environments

aggressive environments
Cut: Regular | Material: Twill 100% Cotton 195 g/m² - Canvas
100% Polyamid PU coating 220 g/m² | Preformed knees |
Number of pockets: 8

 \oplus CORDURA® reinforcements for optimum abrasion resistance

Navy blue-Orange XS → 3XL

M1PA2

EN14404 Type 2 Level 0

Stylish, universal work trousers with regular fit Cut : Loose | Material : Twill 65% Polyester 35% Cotton 235 g/m² - Twill 65% Polyester 35% Cotton 245 g/m² | Seams : Triple seams | Waist: Elasticated sides | Preformed knees | Number of pockets:

Mach 1

⊕ Triple stitching to reduce the risk of tearing

Navy blue-Orange XS → <u>3XL</u>

M1BE2

Stylish, universal work shorts with regular fit Cut: Loose | Material: Twill 65% Polyester 35% Cotton 235 g/m² - Twill 65% Polyester 35% Cotton 245 g/m² | Seams: Triple seams | Waist: Elasticated sides | Number of pockets: 5

⊕ Triple stitching to reduce the risk of tearing

Grey XS → 3XL

Navy blue-Orange XS → 3XL

M1SA2

EN14404 Type 2 Level 0

Stylish, universal dungarees with regular fit Cut: Loose | Material: Twill 65% Polyester 35% Cotton 235 g/m² -Twill 65% Polyester 35% Cotton 245 g/m² | Seams: Triple seams | Preformed knees | Number of pockets: 8

⊕ Triple stitching to reduce the risk of tearing

EN14404 CE Type 2 Level 0

x 10

M1CO2

Stylish, universal overalls with regular fit Cut: Loose | Material: Twill 65% Polyester 35% Cotton 235 g/m² -Twill 65% Polyester 35% Cotton 245 g/m² | Seams: Triple seams | Waist: Elastic back | Preformed knees | Number of pockets: 7

Material: Twill 65% Polyester 35% Cotton 235 g/m² - Twill 65% Polyester 35% Cotton 245 g/m² | Number of pockets: 3

Material : Twill 65% Polyester 35% Cotton 235 g/m² - Twill 65% Polyester 35% Cotton 245 g/m² | Number of pockets : 6

⊕ Triple stitching to reduce the risk of tearing

 $C \in$

M1VE2

Navy blue-Orange XS → 3XL

⊕ Covered zip to prevent scratching

Stylish, universal work jacket

 ϵ

Stylish, universal work vest

M1GI2

 \oplus Covered zip to prevent scratching

PANOSTRPA

Universal stretch work trousers, regular cut Cut : Regular | Material : Twill 63% Polyester 34% Cotton 3% Elastane 240 g/m² | Waist : Elastic back | Preformed knees | Number of pockets: 5

⊕ Stretch fabric for freedom of movement

M6PAN

EN14404 Type 2 Level 0

Loose-fitting universal work trousers with added style Cut : Loose | Material : Twill 65% Polyester 35% Cotton 235 g/m² | Waist : Elasticated sides | Number of pockets : 7

① Can be combined with all garments in the range of the same

M6BER

Loose-fitting universal work shorts with added style Material : Twill 65% Polyester 35% Cotton 235 g/m² | Waist : Elasticated sides | Number of pockets : 5

⊕ Can be combined with all garments in the range of the same

EN14404 CE Type 2 Level 0

M6SAL

Universal loose-fitting overalls with added style Cut: Loose | Material: Twill 65% Polyester 35% Cotton 235 g/m² | Waist: Elasticated sides | Number of pockets: 8

① Can be combined with all garments in the range of the same name

EN14404 $C \in$ Type 2 Level 0

M6COM

Loose-fitting universal jumpsuit with added style Cut : Loose | Material : Twill 65% Polyester 35% Cotton 235 g/m² | Waist : Elasticated waist | Number of pockets : 9

① Can be combined with all garments in the range of the same name

 $C \in$

M6VES

Universal work jacket with added style Material: Twill 65% Polyester 35% Cotton 235 g/m² | Number of pockets: 4

 \oplus Can be combined with all garments in the range of the same name

Grey-Green XS → 3XL

 ϵ

M6GIL

Universal work waistcoat with added style Material: Twill 65% Polyester 35% Cotton 235 g/m² | Number of pockets: 6

BALI

Lightweight, stylish, round-neck, quick dry technical t-shirt for summer comfort Material : Stitch 100% Polyester 160 g/m²

⊕ Quick-drying to stay dry in hot weather

Navy blue-Orange M → 3XL

Grey-Navy blue M → 3XL

Orange-Grey S → 3XL

GENOA2

100% premium cotton round neck T-shirt with the style and comfort of natural fibres Material: Plain stitch 100% Cotton 180 g/m²

Black S → 5XL

Grey-Black S → 3XL

Navy blue-Black S → 3XL

Grey S → 3XL

NAPOLI

Universal T-shirt with round neck 100% cotton for more comfort Material : Plain stitch 100% Cotton 140 g/m 2

LAZIO

Navy blue S → 3XL

100% premium cotton round neck T-shirt with the style and

comfort of natural fibres Material : Plain stitch 100% Cotton 180 g/m²

x 10

SINGA

Black S → 3XL

100% premium cotton round neck T-shirt with the style and comfort of natural fibres

Material: Plain stitch 100% Cotton 180 g/m²

x 10

AGRA

Black S → 3XL

Short-sleeve cotton polo t-shirt, 100% cotton for extra comfort Material : Pique stitch 100% Cotton 200 g/m²

x 10

TURINO

Long-sleeve cotton polo t-shirt, 100% cotton for extra comfort Material: Pique stitch 100% Cotton 210 g/m²

VERONA

Original cap design for stylish sun protection Material : Twill 65% Polyester 35% Cotton 245 g/m²

Black-Grey

Grey-Orange Navy blue-Royal blue

Black

Removable badge holder for the Panostyle range

Black

REEF

Stretch waistband for total freedom of movement and comfort Material : 70% Polyester 30% Elastane | Belt length : 123 cm | Belt width : 3,7 cm

 \oplus Stretch fabric for freedom of movement

Grey

ATOLL

Sturdy, stylish belt with brushed aluminium-look buckle Material : 100% Polyester | Belt length : 120 cm | Belt width : 4 cm

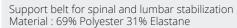
MAPOC

Set of 2 removable pockets for optimum storage of tools and

Material : Canvas Oxford 100% Polyester 290 g/m² | Number of

pockets: 6

Black



 \oplus Oxford fabric for better abrasion resistance

CEINT04

Black M → XL

 ϵ

EN14404 Type 2 Level 0

M2GEN

Pair of knee pads compatible with our MACH and MAIAO2 ranges equipped with knee pad pockets, suitable for work on flat floors Material: 100% Polyethylene

 $C \in$

ZIMA

Pair of universal gel knee pads with non-slip outer shell, suitable for all types of floors

Material : Canvas Oxford 100% Polyester PVC coating - Canvas 100% Polyester - PVC shell

CHOOSE YOUR PRODUCT ACCORDING TO YOUR ENVIRONMENT

Bombers Bombers Bombers RAI NO SHI REF	OTION OOVE, DOON, LORCA, BLOOM, SHERMAN OPER ANDERS (2 EN 1), RANDERS2 (2 EN 1), EWDELTA2 (2 EN 1) EMAN ORTHWOOD3, FLEN HERMAN2 ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2	General requirements ENISO13688	EN14058	EN342	Rain EN343	*/**/*** * * * *
Bombers Bombers Bombers RAI NO SHI REF	OTION OOVE, DOON, LORCA, BLOOM, SHERMAN OPER ANDERS (2 EN 1), RANDERS2 (2 EN 1), EWDELTA2 (2 EN 1) EMAN ORTHWOOD3, FLEN IERMAN2 ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2	•		EN342	EN343	*
Bombers Bombers Bombers RAI NO SHI REF	OTION OOVE, DOON, LORCA, BLOOM, SHERMAN OPER ANDERS (2 EN 1), RANDERS2 (2 EN 1), EWDELTA2 (2 EN 1) EMAN ORTHWOOD3, FLEN IERMAN2 ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2		•			
Bombers Bombers RAI NE YER NO SHI REF	OOVE, DOON, LORCA, BLOOM, SHERMAN OPER ANDERS (2 EN 1), RANDERS2 (2 EN 1), EWDELTA2 (2 EN 1) EMAN ORTHWOOD3, FLEN IERMAN2 ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2		•		•	
Bombers RAI NE YER NO SHI REF	OPER ANDERS (2 EN 1), RANDERS2 (2 EN 1), EWDELTA2 (2 EN 1) EMAN ORTHWOOD3, FLEN HERMAN2 ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2	•	•		•	
Bombers RAI NEW YER NO SHI REF	ANDERS (2 EN 1), RANDERS2 (2 EN 1), EWDELTA2 (2 EN 1) EMAN ORTHWOOD3, FLEN IERMAN2 ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2	•	•		•	
Bombers NET YER NO SHI REF	EWDELTA2 (2 EN 1) EMAN ORTHWOOD3, FLEN ERMAN2 ENO2 (2 EN 1) JBY D4, 400 DJI3, STOCKTON3, SIERRA2	•	•		•	
Shirts RUI	ORTHWOOD3, FLEN JERMAN2 ENO2 (2 EN 1) JBY J4, 400 DJI3, STOCKTON3, SIERRA2	•	•		•	*
Shirts RU	JERMAN2 ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2	•	•			
Shirts RUI	ENO2 (2 EN 1) JBY 14, 400 DJI3, STOCKTON3, SIERRA2	•	•			
Shirts RU	JBY 14, 400 DJI3, STOCKTON3, SIERRA2	•				
	04, 400 DJI3, STOCKTON3, SIERRA2	•				
Suits 200	DJI3, STOCKTON3, SIERRA2	•				
Sults 504					•	
FID						*
	DOON, GRAVITY					
	DLEN	•				
Coats MA	A305, MA400	•			•	
M2	2PW3	•				
Trousers 850	OPAN GALWAY 900PAN	•			•	
MI	ILTON2	•				*
TAT	TRY, VIGO	•				
AR	REN, CARSON2, GOTEBORG2, TATRY2	•			•	
FIN	NNMARK2, DARWIN3	•			•	*
Parkas HE	ELSINKI2	•		•	•	***
AL	.ASKA3 (5 EN 1)	•	•			**
EO	DLE2 (3 EN 1)	•			•	
ISO	OLA2 (5 EN 1)	•			•	
Polars BRI BEA	RIGHTON2, MARMOT, KODIAK, ALMA, EAVER, BEAVER2, VERNON2					
7 (AGOYA2	•				
	ORTEN2					
	RSA (2 EN 1)					
	ILEA2, HORTEN2LIGHT					
	YSEN2 (2 EN 1)					
	DLDYPANTS, KOLDYTOP					
Sweats	NZIO, LECCO, AREZZO, OLINO, BORGO					
OT/	TAKE, 850VES, SLIGO, 900VES	•			•	
Jackets LIT						

 $C \in$

MILTON2

Waterproof-breathable stretch parka with windproof mitt, combining freedom of movement and warmth Material: Canvas 94% Polyester 6% Elastane TPU membrane

Material: Canvas 94% Polyester 6% Elastane TPU membrane 2 rolled layers | Lining and padding: 100% polyester | Removable by zip hood | Seams: Waterproof | Upper neck polar lining | Inner wrist: Elastane - Elastane thumb | Number of pockets: 6

 \oplus Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

(€

EOLE2

Waterproof-breathable 2-in-1 parka with removable hard-wearing softshell for optimal protection in all weather conditions Canvas 100% Polyester TPU membrane 2 rolled layers | Lining: 100% polyester | Fixed hood | Seams: Waterproof | Fixed hood | Removable jacket: Material: 2-layer laminated softshell 92% polyester 8% elastane Ripstop - 100% polyester fleece - 320 g/m² | High collar | Zip fastening | Sleeve cuffs: Bias | Number of pockets: 7

 \oplus Waterproof and breathable WP 8000mm /MVP 3000g/m²/ 24hr membrane

TATRY

Waterproof-breathable stretch parka combining lightness and intermediate warmth

Material : Canvas 94% Polyester 6% Elastane TPU membrane 2 rolled layers | Lining and padding : 100% polyester | Removable by zip hood | Seams : Waterproof | Upper neck polar lining | Inner wrist : Elastane | Number of pockets : 8

 \oplus Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

Black S → 3XL

TATRY2

Waterproof-breathable stretch parka combining lightness and

water proof-preatriable stretch parka combining lightness and moderate warmth with its 100% recycled fill Material: Canvas Ripstop 100% Polyester TPU membrane 2 rolled layers | lining: 100% polyester | Padding: 100% recycled polyester | Fixed hood | Seams: Waterproof | Inner wrist: Elastane | Number of pockets: 5

⊕ Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

Grey-Black S → 3XL

CARSON2

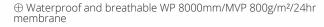
Waterproof parka for intense warmth

Material: Carvas Oxford 100% Polyester PU coating | Lining and padding: 100% polyester | Removable by zip hood | Seams: Waterproof | Upper neck polar lining | Waist: Cord adjustment | Inner wrist: Elastane | Number of pockets: 6

⊕ Oxford fabric for better abrasion resistance

Orange-Grey S → 3XL

AREN



Material: Canvas 100% Polyester TPU membrane 2 rolled layers | lining : 100% polyester | Padding : 100% recycled polyester Fixed retractable hood | Seams : Waterproof | Number of pockets: 4

CE

 $C \in$

x 10

VIGO

Waterproof-breathable stretch parka combining lightness and intermediate warmth

Material : Canvas 96% Polyester 4% Elastane TPU membrane 2 rolled layers | Lining and padding: 100% polyester | Fixed hood | Upper neck polar lining | Inner wrist : Elastane | Number of pockets: 4

⊕ Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

KOPER

Black S → 3XL

⊕ Fleece lining for soft warmth

 $C \in$

FINNMARK2

Waterproof parka combining resistance and extra warmth Material: Canvas Ripstop 100% Polyester PU coating | Lining and padding: 100% polyester | Removable by zip hood | Seams: Waterproof | Upper neck polar lining | Waist: Cord adjustment | Inner wrist: Ribbed cuff | Number of pockets: 4

⊕ Ripstop fabric to prevent tearing

CE

GOTEBORG2

Waterproof-breathable parka without metal components for extra

Material : Canvas 100% Polyester TPU membrane 2 rolled layers | Lining and padding: 100% polyester | Removable by zip hood | Seams: Waterproof | Upper neck polar lining | Inner wrist: Ribbed cuff | Number of pockets: 4

⊕ Metal-free clothing to limit electrical and electrostatic risks

Navy blue-Royal blue S → 3XL

Parkas and bombers jackets

ALASKA3

protection in any weather Material : Canvas Pongee 100% Polyester PVC coating | lining : 100% polyester | Fixed retractable hood | Seams : Waterproof | Waist: Cord adjustment | Removable jacket: Material: 100% fleece 300 g/m² polyester | Removable sleeves | High collar | Zip fastening | Elasticated hem Zip closure | Elasticated cuffs | 2 pockets | Number of pockets : 6

⊕ Waterproof clothing to stay dry in heavy rain

HELSINKI2

Waterproof parka with ribbed inner cuffs for optimum protection from the cold down to -30°C, both indoors and outdoors Material : Canvas 100% Polyester PVC coating | Lining and padding : 100% polyester | Removable by zip hood | Seams : Waterproof | Upper neck polar lining | Waist : Cord adjustment | Inner wrist : Ribbed cuff | Number of pockets : 4

⊕ Waterproof fabric to stay dry in medium rain

DARWIN3

Universal waterproof parka for added warmth Material: Canvas Pongee 100% Polyester PVC coating | Lining and padding: 100% polyester | Fixed retractable hood | Waist: Cord adjustment | Inner wrist: Ribbed cuff | Number of pockets: 5

⊕ Waterproof clothing to stay dry in heavy rain

ISOLA2

5-in-1 waterproof parka for a balance between style, comfort and thermal insulation suitable for all budgets Material : Canvas Pongee 100% Polyester PVC coating | lining : 100% polyester | Fixed retractable hood | Seams : Waterproof | Waist : Cord adjustment | Removable jacket: Material: Taffeta 100% polyester - Lining: 100% cotton flannel - Padding: 100% polyester fibres 100% polyester | Removable sleeves | Closing by Waist : Cord adjustment | Removable jacket: Material: Taffeta press studs | Number of pockets: 7

⊕ Waterproof clothing to stay dry in heavy rain

FLEN

Waterproof stretch parka combining lightness and soft warmth with its 100% recycled fill
Material: Canvas 100% Polyester TPU membrane 2 rolled layers

lining : 100% polyester | Padding : 100% recycled polyester | Fixed retractable hood | Seams : Waterproof | Number of pockets: 4

Grey-Black S → 3XL

⊕ Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

CE

NORTHWOOD3

Waterproof jacket offering moderate warmth Material : Canvas Oxford 100% Polyester PU coating | Lining and padding : 100% polyester | Removable by zip hood | Seams : Waterproof | Upper neck polar lining | Number of pockets : 6

⊕ Oxford fabric for better abrasion resistance

 $C \in$

YEMAN

Hard-wearing, polar fleece-lined jacket that combines style with

Material : Canvas Ripstop 65% Polyester 35% Cotton 245 g/m² -Canvas 65% Polyester 35% Cotton 300 g/m² | Lining and padding : 100% polyester | Removable by zip hood | Upper neck polar lining | Number of pockets: 8

⊕ Ripstop fabric to prevent tearing

Grey S → 3XL

MOTION

Windproof jacket combining style and soft warmth Material: Canvas 100% Polyester PU coating - Softshell 96% Polyester 4% Elastane 2 rolled layers | Lining and padding: 100% polyester | Polyester polar fleece | 280 g/m² | Fixed hood | Number of pockets: 5

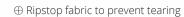
⊕ Lightweight clothing for greater comfort

Navy blue-Royal blue S → 3XL

DOON

Down jacket with a soft warmth provided by its 100% recycled fill Material : Canvas 100% Polyamid 250 g/m² | Lining and padding : 100% polyester | Fixed hood | Number of pockets : 2

⊕ Lightweight clothing for greater comfort



BLOOM

Jacket combining style and soft warmth with its 100% recycled fill Material: Canvas Ripstop 100% Polyamid PU coating | lining: 100% polyester | Padding: 100% recycled polyester | Fixed hood | Number of pockets: 3

MOOVE

Windproof jacket combining style and soft warmth with 100%

Material: Canvas Ripstop 100% Polyamid PU coating - Stitch % Polyester 2 rolled layers | lining: 100% polyester | Padding: 100% recycled polyester | Fixed hood | Number of pockets: 5

⊕ Ripstop fabric to prevent tearing

CE

RANDERS

Windproof and water-repellent 2-in-1 down jacket for light rain

with removable sleeves for extra warmth

Material: Canvas 100% Polyamid PU coating | Lining and padding: 100% polyester | Removable by snap fastener | Number of pockets: 5

 \oplus PU coating for greater breathability

 $C \in$

RANDERS2

Windproof and water-repellent 2-in-1 down jacket for light rain with removable sleeves for extra warmth

Material: Canvas 100% Polyamid PU coating | Lining and padding: 100% polyester | Removable by snap fastener | Number of pockets: 5

⊕ PU coating for greater breathability

Navy blue S → 3XI

Windproof jacket combining style and soft warmth with 100% recycled fill

Material : Twill 60% Cotton 40% Polyester | Lining and padding : 100% polyester | Number of pockets : 7

⊕ Lightweight clothing for greater comfort

 ϵ

Windproof, water-repellent 2-in-1 jacket with polar fleece lining and removable sleeves for perfect adaptation to the initial cold weather

Material: Canvas Oxford 100% Polyester PU coating | Lining and padding: 100% polyester | Upper neck polar lining | Number of pockets: 5

⊕ PU coating for greater breathability

Universal 2-in-1 windproof jacket with removable sleeves offering effective warmth with its 100% recycled fill

Material : Canvas 80% Polyester 2Ó% Cotton | lining : 100% polyester | Padding : 100% recycled polyester | Number of pockets : 4

 \oplus 100% recycled wadding for a more environmentally-friendly product

 $C \in$

x 10

FIDJ13

Sleeveless bodywarmer with polar fleece lining combining lightness and soft moderate warmth with its 100% recycled fill Material: Canvas Ripstop Pongee 100% Polyester PVC coating - Canvas Oxford 100% Polyester PVC coating | lining: 100% polyester | Padding: 100% recycled polyester | Upper neck polar lining | Number of pockets: 4

⊕ Side opening for comfort, even when squatting

Grey-Black S → 3XL

 ϵ

HOLEN

Windproof and water-repellent sleeveless stretch bodywarmer, combining style and freedom of movement Material: Softshell 96% Polyester 4% Elastane TPU membrane 3 rolled layers | 100% polyester polar fleece | 300 g/m² | Number of pockets: 4

 \oplus Waterproof and breathable WP 8000mm / MVP 1000g/m²/ 24hr membrane

Green-Black S → 3XL

STOCKTON2

Sleeveless bodywarmer with 9 pockets and windproof armholes, combining style and moderate warmth Material : Twill 65% Polyester 35% Cotton 235 g/m² | Lining and

padding: 100% polyester | Number of pockets: 9

① Can be combined with all garments in the range of the same

Navy blue-Royal blue S → 3XL

STOCKTON3

Sleeveless bodywarmer with 9 pockets and windproof armholes,

combining style and moderate warmth

Material: Twill 65% Polyester 35% Cotton 245 g/m² | Lining and padding: 100% polyester | Number of pockets: 9

⊕ Compatible with Mach 2 range products

Grey-Orange S → 3XL

Black-Red S → 3XL

Grey-Yellow S → 3XL

Navy blue-Orange S → 3XL____

GRAVITY

Sleeveless down bodywarmer with seamless quilting, combining style and moderate warmth with its 100% recycled fill
Material: Canvas 100% Polyester TPU membrane 2 rolled layers |
lining: 100% polyester | Padding: 100% recycled polyester |
Number of pockets: 5

⊕ Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

G-DOON

Down jacket with a soft warmth provided by its 100% recycled fill Material: Canvas Ripstop 100% Polyamid PU coating | lining: 100% polyester | Padding: 100% recycled polyester | Number of pockets: 3

 \oplus Lightweight clothing for greater comfort

Black-Camouflage S → 3XL

Black-Red S → 3XL

Black-Yellow S → 3XL

Navy blue-Royal blue S → 3XL

 ϵ

SIERRA2

Universal sleeveless bodywarmer with 9 pockets and windproof armholes combining style and moderate warmth with its 100% recycled fill

minimises sylve and moderate warmen with its reference fill
Material: Canvas 80% Polyester 20% Cotton | lining: 100% polyester | Padding: 100% recycled polyester | Number of pockets: 9

 $\ensuremath{\oplus}$ Thermal reinforcement protects the kidneys to limit air penetration

Black S → 3XL

Grey-Green S → 3XL

Navy blue-Red S → 3XL

Navy blue S → 3XL

Navy blue-Orange S → 3XL

ORSA

Windproof, water-repellent and durable 2-in-1 softshell stretch with removable hood and sleeves, combining style and freedom of movement

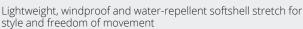
Material: Ripstop Softshell 92% Polyester 8% Elastane TPU membrane 3 rolled layers | Polyester polar fleece | 320 g/m² | Removable by zip hood | Number of pockets : 3

⊕ Waterproof and breathable WP 8000mm /MVP 3000g/m²/ 24hr membrane

HORTEN2

Windproof and water-repellent softshell stretch, combining style and freedom of movement

Material : Softshell 96% Polyester 4% Elastane TPU membrane 3 rolled layers | 100% polyester polar fleece | 300 g/m² | Fixed hood | Number of pockets : 4



Black-Yellow $S \rightarrow 3XL$ **HORTEN2 LIGHT**

Material: Softshell 96% Polyester 4% Elastane 2 rolled layers | 100% polyester polar fleecé | 200 g/m² | Fixed hood | Number of pockets: 4

⊕ Waterproof and breathable WP 8000mm /MVP 3000g/m²/ 24hr membrane

MYSEN2

Blue-Black S → 3XL

Windproof and water-repellent 2-in-1 softshell for light rain with

removable sleeves for year-round use Material : Softshell 96% Polyester 4% Elastane 2 rolled layers | Polyester polar fleece | 280 g/m² | Number of pockets : 5

⊕ 2-layer complex for added lightness

Grey-Yellow S → 3XL

x 10

MYSEN2F

2-in-1 women's cut, windproof and water-repellent softshell for light rain with removable sleeves for year-round use Material: Softshell 96% Polyester 4% Elastane 2 rolled layers | Polyester polar fleece | 280 g/m² | Number of pockets: 5

 \oplus 2-layer complex for added lightness

Black S → 3XL

Versatile, windproof and water-repellent softshell for light rain Material : Softshell 96% Polyester 4% Elastane 2 rolled layers | Polyester polar fleece | $280~\text{g/m}^2$ | Number of pockets : 5

 \oplus 2-layer complex for added lightness

Grey-Black S → 3XL

Navy blue-Black S → 3XL

SHERMAN

Polar fleece-lined jacket with extra warmth Material: Polar padded 100% Polyester 540 g/m² | Number of pockets: 5

⊕ Fleece lining for intense warmth

Grey-Black S → 3XL

SHERMAN2

Fleece-lined jacket with extra warmth Material: Stitch 100% Polyester 550 g/m² - Polar fleece padded 100% Polyester | Number of pockets: 5

⊕ Fleece lining for intense warmth

Red-Black S → 3XL

Grey-Black S → 3XL

⊕ Fleece lining for intense warmth

Navy blue-Black S → 3XL

NAGOYA2

KODIAK

Polar fleece vest with bird eye effect and softshell combining warmth and freedom of movement Material: Stitch 100% Polyester 265 g/m² - Softshell 94%

Polyester 6% Elastane TPÚ membrane 3 rolled layers 310 g/m² | Number of pockets: 5

⊕ CORDURA® reinforcements for optimum abrasion resistance

BEAVER

Navy blue-Orange S → 3XL

Softshell, polar fleece, pullover vest combining warmth and

freedom of movement

Material: Stitch 100% Polyester 380 g/m² - Softshell 96% Polyester 4% Elastane 2 rolled layers 270 g/m² | Number of pockets: 2

⊕ Lightweight clothing for greater comfort

BEAVER2

Polar fleece vest with bird eye effect and softshell combining warmth and freedom of movement
Material: Stitch 100% Polyester 265 g/m² - Softshell 96%
Polyester 4% Elastane 2 rolled layers 280 g/m² | Number of pockets: 4

 \oplus Lightweight clothing for greater comfort

MARMOT

Polar fleece pullover with shoulder and elbow pads Material: Stitch 100% Polyester 285 g/m² - Twill 100% Polyester 2 rolled layers

⊕ Reinforced fabric for greater resistance.

Navy blue-Black S → 3XL

Polar fleece vest with extra warmth and resistance Material : Fleece 100% Polyester 2 rolled layers 420 g/m² - Canvas Ripstop Pongee 100% Polyester 80 g/m² | Number of pockets : 5

⊕ Ripstop reinforcements to prevent tearing

Black S → 3XL

Royal blue S → 3XL

VERNON

Universal, polar fleece vest suitable for all purposes Material : Fleece 100% Polyester 280 g/m² | Number of pockets :

Navy blue-Black S → 3XL

VERNON2

Universal, two-tone, polar fleece vest suitable for all purposes Material : Fleece 100% Polyester 280 g/m² | Number of pockets :

Black S → 3XL

Universal, polar fleece jacket suitable for all purposes Material : Fleece 100% Polyester 200 g/m²

ALMA

KOLDYTOP

Thermo-regulating innerwear t-shirt (Coolmax®), for more comfort when temperatures drop Material : Stitch 60% Polyamid 35% Coolmax® 5% Elastane 230 g/m²

KOLDYPANTS

Thermo-regulating innerwear pants (Coolmax®), for more comfort when temperatures drop Material: Stitch 60% Polyamid 35% Coolmax® 5% Elastane 230 g/m²

AREZZO

Full zip hoodie with elbow pads Material : Fleece 65% Polyester 35% Cotton 280 g/m² | Fixed hood | Number of pockets : 2

⊕ Reinforced fabric for greater resistance.

Grey S → 3XL

Navy blue S → 3XL

Full zip hoodie, combining style and warmth Material : Fleece 65% Polyester 35% Cotton 320 g/m² | Fixed hood | Number of pockets : 4

Grey-Black S → 3XL

ANZIO

Full zip hoodie, combining style and warmth Material : Fleece 65% Polyester 35% Cotton 320 g/m² | Fixed hood | Number of pockets : 5

LECCO

Hoodie to suit all styles Material : Fleece 65% Polyester 35% Cotton 280 g/m² | Fixed hood | Number of pockets : 1

OLINO

Universal sweatshirt with shoulder and elbow pads Material: Fleece 65% Polyester 35% Cotton 260 g/m²

⊕ Reinforced fabric for greater resistance.

RUBY

100% cotton flannel work shirt combining style and warmth Material : Flannel 100% Cotton 150 g/m² \mid Number of pockets : 1

Navy blue-Orange S → 3XL

polyester | Fixed retractable hood | Seams : Waterproof | Number of pockets: 5

⊕ Water-repellent fabric to keep you dry in light rain

Grey-Black S → 3XL

OTAKE

Waterproof-breathable jacket ideal for deteriorating weather conditions

Material : Canvas 100% Polyamid PU coating | lining : 100% polyester | Fixed retractable hood | Seams : Waterproof | Upper neck polar lining | Number of pockets : 6

① Breathable fabric for maximum moisture transfer

S → 3XI

Navy blue-Royal blue S → 3XL

Waterproof and durable rain parka for deteriorating weather

Material : Canvas Oxford 100% Polyester PU coating | lining : 100% polyester | Fixed retractable hood | Seams : Waterproof | Number of pockets : 7

⊕ Oxford fabric for better abrasion resistance

CE

900VES

Waterproof rain jacket with PU coating on reinforced fabric for durability and breathability in deteriorating weather conditions Material : Support 100% Polyester PU exterior 190 g/m² | Fixed hood | Seams: Thermo-welded | Inner wrist: Elastic | Number of pockets: 2

⊕ PU coating for greater breathability

 $C \in$

900PAN

Waterproof and breathable rain trousers with PU coating on reinforced fabric for durability and breathability in deteriorating weather conditions

Material : Support 100% Polyester PU exterior 190 g/m² | Seams : Thermo-welded | Waist : Elasticated waist | Number of pockets :

⊕ PU coating for greater breathability

Elastic | Number of pockets : 2

 $C \in$

850VES

Waterproof and breathable rain vest with PVC/PU coating on reinforced fabric for durability in deteriorating weather conditions

 \oplus Waterproof clothing to stay dry in heavy rain

CE

850PAN

Waterproof and breathable rain trousers with PVC/PU coating on reinforced fabric for durability in deteriorating weather conditions Material: Support 100% Polyester Exterior PVC/PU coating 270 g/m² | Seams : Thermo-welded | Waist : Elasticated waist

Material : Support 100% Polyester Exterior PVC/PU coating 270 g/m² | Fixed hood | Seams : Thermo-welded | Inner wrist :

⊕ Waterproof clothing to stay dry in heavy rain

400

Waterproof rain suit coated on reinforced fabric for greater durability in deteriorating weather conditions Material : Canvas 100% Polyester PVC coating | Fixed hood |

Seams: Waterproof | Waist: Elasticated waist | Number of

pockets: 4

⊕ Waterproof clothing to stay dry in heavy rain

Green M → 2XL

304

Universal coated indoor/outdoor rain gear for deteriorating weather conditions

Material: Support 100% Polyester Double-sided PVC coating | Fixed hood | Seams: Thermo-welded | Waist: Elasticated waist | Inner wrist: Elastic | Number of pockets: 3

⊕ Waterproof clothing to stay dry in heavy rain

MA400

Waterproof raincoat with coating on reinforced fabric for durability and breathability in deteriorating weather conditions Material : Canvas 100% Polyester PVC coating | Fixed hood | Seams : Waterproof | Inner wrist : Elastic | Number of pockets : 2

⊕ Waterproof clothing to stay dry in heavy rain

 \in

305

Universal waterproof raincoat with inside/outside coating for

deteriorating weather conditions

Material: Support 100% Polyester Double-sided PVC coating |

Fixed hood | Seams: Thermo-welded | Inner wrist: Elastic |

Number of pockets: 2

⊕ Waterproof clothing to stay dry in heavy rain

CE

GALWAY

Waterproof and durable rain trousers ideal for deteriorating

weather conditions
Material: Canvas Oxford 100% Polyester PU coating 185 g/m² |
Seams: Waterproof | Waist: Elasticated waist | Number of

⊕ Oxford fabric for better abrasion resistance

CHAMONIX

Polar fleece neck guard to protect you from the cold Material : Fleece 100% Polyester 260 g/m 2

x 120

BALTIC

Polar fleece balaclava to protect you from the cold Material : Fleece 100% Polyester 180 g/m 2

x 120

NORDIC

Warm cap with earmuffs to protect you from the cold Material : Canvas 100% Polyamid 430 g/m² - Fur 100% Acrylic

Navy blue

x 120

NEVE

Polar fleece gloves to protect you from the cold Material : Fleece 100% Polyester 260 g/m²

HIGH VISIBILITY

		C€				(*
		General requirements	Н	V	UPF	Rain	Cold	Warm
		EN ISO 13688	EN ISO 20471 Cl1, Cl2, Cl3	EN 13356	EN 13758-2	EN 343	EN 342	* / ** / ***
Accessories	BAUCE2, BRAS2	•		•				
Bermuda	PHBE2	•	Cl 1					
Bombers	FLENHV, RENOHV (2 IN 1)	•	CI 3			•		
	FREEWAYHV (2 IN 1)	•	CI 2					
Down jacket	DOONHV	•	Cl 3					
Vests	FIDJIHV, FIDJI3HV (REVERSIBLE)	•	Cl 2					*
	GILP2, GILP4	•	Cl 2					
Trousers	900PANHV, FARGOHV	•	Cl 1			•		
	M2PHV, PHPA2	•	CI 2					
Parkas	ARENHV, EASYVIEW, SPEED (5 IN 1), TARMAC, TRACK (5 IN 1 WITH FAST)	•	CI 3			•		
rdikds	OPTIMUM3 (5 IN 1)	•	Cl 3			•	•	***
	STRADA2	•	Cl 3			•		*
Polars, Sweats	ASTRAL, MARMOTHV	•	Cl 3					
Fuldis, Swedis	ZENITH	•	CI 2					
	FAST (5 IN 1 WITH TRACK)	•	Cl 2					
Softshells	LEGA, MOONLIGHT2 (2 IN 1)	•	Cl 3					
	COMET, NOVA, OFFSHORE	•	Cl 2					
Tshirts/Polos	сомоѕ	•	Cl 3		•			
	METEOR, STAR	•	Cl 3					
Jackets	900VESHV	•	Cl 3			•		
Jackets	M2VHV, PHVE2	•	CI 2					

COLD STORAGE

		C€		*	
		General requirements	Cold	Warm	
		EN ISO 13688	EN 342	* / ** / ***	
Overalls	IGLO02	•	•	***	
Trousers	AUSTRAL2, ICEBERG	•	•	***	
Parkas	LAPONIE2, NORDLAND	•	•	***	

HEAT RESISTANT, ANTISTATIC, ELECTRIC ARC

		€					爣	4			
		General requirements	High visibility	Heat & Flame	Flamme	Soudure	Arc électrique	Antistatic	Chemicals Splashes	Rain	Knees protection
		EN ISO 13688	EN ISO 20471	EN ISO 11612	EN ISO 14116	EN ISO 11611	EN 61482-2	EN 1149-5	EN 13034	EN 343	EN 14404
Acceptation	CAGFR2	•		•			•	•			
Accessories	MAIMA2			•		•	•	•			
Overall	MAICO2	•		•		•	•	•			•
Trousers	MAIPA2			•		•	•	•			•
	MAICA2	•		•		•	•	•			
Parkas	KOMODO2 (2 IN 1)				•			•	•	•	
	KOMODO2 HV (2 IN 1)	•			•			•	•		
Underwear	SSVFR2						•	•			
Sweat	SWEFR2	•		•			•	•			
Tshirts/Polos	POLOFR2							•			
Jacket	MAIVE2	•		•		•	•	•			

CHEMICAL

CHEWICAL									
		(€		4				8	&
		General requirements	Flame	Antistatic	Chemical splashes	Liquid chemicals	Chimique Particules solides	Radioactive contamination	Infective agents
		EN ISO 13688	EN ISO 14116	EN 1149-5	EN 13034	EN 14605	EN ISO 13982-1	EN 1073-2	EN 14126
Accessories	HO600					•			
	CO600					•			
	DT115, DT115CV	•		•					
	DT117			•	•				
	DT119, DT300	•		•	•	•			
Overalls	DT125, DT221			•	•		•		
	DT215, DT215CV, DT216	•			•		•		
	DT223		•	•	•			•	
	DT250				•	•			•
Aprons	TO600								

WELDING

		C€	
		General requirements	Welding
		EN ISO 13688	EN ISO 11611
Accessories	SUMGUE, SUMMAN	•	•
Trousers	SUMPAN	•	•
Aprons	SUMTAB	•	•
Jackets	SUMVES	•	•

APRONS, COATS

		C€	77
		General requirements	Food contact
		EN ISO 13688	
Coats	BLOUSPO		•
Coats	PO106		
	TABALPV		
Anrons	TABLIVE		
Aprons	TABNIT	•	
	TABPU		

Outdoor high visibility

Fluorescent yellow-Grey S → 3XL

TARMAC

Class 2 x25

Durable and stylish 5-in-1 waterproof parka with removable softshell vest for day and night visibility

Material: Canvas Oxford 100% Polyester PU coating | lining: 100% polyester | Seams : Waterproof | Fixed retractable hood | Removable jacket : Removable sleeves | Material : Softshell 2 laminated layers 96% polyester 4% elastane - 100% fleece 270 g/m² polyester | Number of pockets: 7

⊕ 2-layer complex for added lightness

Fluorescent yellow-Navy blue S \rightarrow 5XL

OPTIMUM3

Waterproof and warm 5-in-1 parka with removable jacket, combining style and durability, for day and night visibility
Material: Canvas Oxford 100% Polyester PU coating | lining:
100% polyester | Seams: Waterproof | Fixed retractable hood | Upper neck polar lining | Removable jacket : Removable sleeves | Material: 100% polyester PU coated Oxford canvas. 100% polyester 175 g/m² | Seams : Waterproof | Collar Fleece-lined

⊕ Fleece lining for intense warmth

stand-up collar | Number of pockets : 6

Navy blue S → 5XI

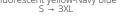
Fluorescent orange Navy blue S → 5XL

Fluorescent yellow-Navy blue S \rightarrow 5XL

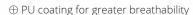
SPEED

100% polyester | Seams : Waterproof | Fixed retractable hood | Removable jacket : Removable sleeves | Material : 100% polyester PU-coated Oxford canvas | Lining: 100% polyester | Sleeves: 100% polyester fleece | Seams : waterproof | Fleecelined stand-up collar | Number of pockets : 6

 \oplus Fleece lining for soft warmth



EN343



STRADA 2

Waterproof-breathable parka that can be combined with FAST for rain and warmth functions and day and night visibility Material : Canvas Ripstop 100% Polyester PU membrane 2 rolled layers | lining : 100% polyester | Seams : Waterproof | Fixed retractable hood | Number of pockets : 4

⊕ Waterproof and breathable WP 8000mm / MVP 5000g/m²/24hr membrane

x 10

Waterproof, warm and light stretch parka for day and night

visibility

Material: Capyas 100% Polyaster TPLI membrane 2 rolled I

Material : Canvas 100% Polyester TPU membrane 2 rolled layers | lining : 100% polyester | Padding : 100% recycled polyester | Seams : Waterproof | Fixed retractable hood | Number of pockets : 4

ARENHV

EASYVIEW

RENO HV

 \oplus Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

 $C \in$

Universal waterproof parka, combining resistance and moderate warmth, for day and night visibility

Material: Canvas Oxford 100% Polyester Polyurethane coating | Lining and padding: 100% polyester | Seams: Waterproof | Fixed retractable hood | Number of pockets: 3

⊕ Oxford fabric for better abrasion resistance

Windproof, water-repellent 2-in-1 jacket with polar fleece lining and removable sleeves for the first few cold days and day and night visibility

Material : Canvas Oxford 100% Polyester Polyurethane coating | Lining and padding : 100% polyester | Seams : Waterproof | Fixed retractable hood | Upper neck polar lining | Number of pockets : 4

⊕ Oxford fabric for better abrasion resistance

Outdoor high visibility

Fluorescent yellow S → 3XL

FLENHV

EN343

Material: Canvas 100% Polyester TPU membrane 2 rolled layers | lining: 100% polyester | Padding: 100% recycled polyester Seams: Waterproof | Fixed retractable hood | Number of

Stretch, waterproof, warm and light jacket for day and night

pockets: 4

⊕ Waterproof and breathable WP 8000mm/MVP 800g/m²/24hr membrane

Fluorescent yellow S → 3XL

DOONHV

Down jacket combining resistance and soft warmth with its 100% recycled fill, for day and night visibility
Material: Canvas Ripstop 100% Polyester PU coating 2 rolled
layers | lining: 100% polyester | Padding: 100% recycled polyester | Fixed hood | Number of pockets : 2

⊕ Ripstop fabric to prevent tearing

Fluorescent yellow-Grey $S \rightarrow 5XL$

FAST

2-in-1 stretch softshell with removable sleeves that can be combined with TRACK for rain and warmth functions and day and night visibility

Material: Canvas Ripstop 100% Polyester TPU membrane 3 rolled layers | 100% polyester polar fleece | 290 g/m² | Removable by zip hood | Number of pockets : 3

⊕ Waterproof and breathable WP 8000mm /MVP 3000g/m²/ 24hr membrane

S → 3XL

Grey

Fluorescent yellow-Grey S → 3XL

MOONLIGHT2

Windproof, water-repellent 2-in-1 stretch softshell with removable sleeves for day and night visibility and year-round use Material: Softshell 100% Polyester TPÚ membrane 3 rolled layers | 100% Polyester fleece | 310 g/m² | Number of pockets : 5

LEGA

Windproof, water-repellent 2-in-1 stretch softshell for day and

night visibility and year-round use
Material: Softshell 100% Polyester PU membrane 3 rolled layers | 100% polyester polar fleece | 300 g/m² | Number of pockets : 4

⊕ Waterproof and breathable WP 8000mm / MVP 5000g/m²/ 24hr membrane

ZENITH

Polar fleece vest combining lightness and intermediate warmth for day and night visibility Material: Fleece 100% Polyester - 280 g/m² | Number of pockets:

 ϵ

MARMOTHV

Truck-driver sweater for day and night visibility Material : Stitch 100% Polyester - Stitch 100% Polyester - 380 g/m 2

 $C \in$

ASTRAL

Universal sweatshirt for day and night visibility Material : Fleece 75% Polyester 25% Cotton - 280 g/m²

Outdoor high visibility

Fluorescent yellow-Navy blue

FIDJI HV

Reversible bodywarmer combining strength and reinforced

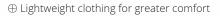
warmth, for day and night visibility. Material: Oxford 100% Polyester Polyurethane coating - Canvas 100% Polyester | Padding: 100% polyester | Number of pockets: 4

Reversible sleeveless bodywarmer combining durability and warmth with its 100% recycled fill, for day and night visibility Material: Canvas Oxford 100% Polyester PU coating - Canvas Ripstop 100% Polyamid PU coating | Padding : 100% recycled polyester | Number of pockets : 5

Fluorescent orange M → 2XL

Fluorescent yellow M → 2XL

FREEWAY HV



2-in-1 jacket with warm removable sleeves for day and night

Material: Stitch 100% Polyester - Canvas 65% Polyester 35% Cotton | Lining and padding: 100% polyester | Number of pockets: 4

Fluorescent yellow

BRAS2

EN13356 Type 2

Armband with integrated badge holder for day and night visibility Material: Canvas Oxford 100% Polyester Polyurethane coating

Fluorescent yellow

BAUCE2

EN13356 Type 2

A shoulder harness for day and night visibility Material: Canvas Oxford 100% Polyester PU coating

⊕ Oxford fabric for better abrasion resistance

GILP4

Universal marking vest with reflective segmented bands in shoulder belt assembly, for day and night visibility Material: Stitch 100% Polyester

Fluorescent yellow L → 2XL median and the

⊕ Certified EN ISO 20471 after 25 washes

GILP2

Universal, high visibility vest with parallel retro-reflective segmented band, for day and night visibility Material: Stitch 100% Polyester

⊕ Certified EN ISO 20471 after 25 washes

900VESHV

Waterproof rain vest with PU coating on reinforced fabric for durability, breathability and day and night visibility Material: Support 100% Polyester Polyurethane coating - 200 g/m² | Seams: Thermo-welded | Fixed hood | Inner wrist: Elastic | Number of pockets: 2

 \oplus PU coating for greater breathability

900PANHV

Waterproof rain trousers with PU coating on reinforced fabric for more durability, breathability, and day and night visibility Material : Support 100% Polyester Polyurethane coating - 200 g/m² | Seams : Thermo-welded | Waist : Elasticated waist | Number of pockets: 2

⊕ PU coating for greater breathability

High Visibility Workwear

Fluorescent orange-Navy blue S → 3XL

Fluorescent yellow-Navy blue $S \rightarrow 3XL$

PHVE2

Material: Twill 80% Polyester 20% Cotton - 230 g/m² | Number of pockets: 2

Universal work jacket with added style for day and night visibility

⊕ Can be combined with all garments in the range of the same

Fluorescent yellow-Navy blue S → 3XL

PHPA2

Loose-fitting universal work trousers with added style, for day and night visibility

Cut: Loose | Material: Twill 80% Polyester 20% Cotton - 230 g/m² | Waist : Elasticated sides | Preformed knees | Number of

① Can be combined with all garments in the range of the same name

Navy blue S → 3XL

Loose-fitting universal work shorts with added style for day and night visibility

Cut : Loose | Material : Twill 80% Polyester 20% Cotton - 230 g/m² | Waist : Elasticated sides | Number of pockets : 5

 \oplus Can be combined with all garments in the range of the same

M2VHV

Lightweight, hard-wearing work jacket for day and night visibility Material : Twill 54% Cotton 46% Polyester - 260 g/m² | Number of pockets: 6

Fluorescent yellow-Grey S → 3XL

Fluorescent orange-Grey S → 3XL

① Can be combined with all garments in the range of the same name

EN14404 Type 2 Level 1

M2PHV

Loose-fitting, lightweight, hard-wearing work trousers for day and night visibility

Cut : Regular | Material : Twill 54% Cotton 46% Polyester - 260 g/m² | Seams : Triple seams | Waist : Elasticated sides | Preformed knees | Number of pockets: 9

① Can be combined with all garments in the range of the same name

x 10

METEOR

Long-sleeved polo shirt for day and night visibility Material: Pique stitch 100% Polyester - 235 g/m²

Fluorescent yellow S → 3XL

 $C \in$

STAR

Long-sleeved T-shirt for day and night visibility Material: Pique stitch 100% Polyester - 235 g/m²

⊕ Certified EN ISO 20471 after 50 washes

Fluorescent yellow S → 5XL

COSMOS



Long-sleeved T-shirt with UV protection for day and night visibility Material: Plain stitch 100% Polyester - 150 g/m²

⊕ UV50+ protection for protection against the sun's rays

Fluorescent orange S → 3XL

Short-sleeved T-shirt, cotton lining, breathable, for day and night

Material : Stitch 55% Cotton 45% Polyester - Stitch Mesh 100% Polyester - 150 g/m²

⊕ Breathable fabric for maximum moisture transfer

Fluorescent orange M → 2XL

Stylish, lightweight short-sleeve polo shirt for day and night

Material : Stitch 100% Polyester - 160 g/m²

Fluorescent orange $S \rightarrow 3XL$

COMET

Lightweight, stylish short-sleeve T-shirt for day and night visibility Material: Stitch 100% Polyester - 160 g/m²

 ϵ

NORDLAND

Waterproof parka with polar fleece collar and windproof mitt, for optimum protection from the cold down to -40 $^{\circ}\text{C}$, both indoors and outdoors

Material: Canvas Oxford 100% Polyester PU coating | Lining and padding: 100% polyester | Seams: Waterproof | Removable by zip hood | Upper neck polar lining | Inner wrist: Elastane - Elastane thumb | Number of pockets: 9

⊕ Waterproof fabric to stay dry in medium rain

 ϵ

ICEBERG

Waterproof dungarees with kidney protector for optimum protection from the cold down to -40°C, both indoors and outdoors

Material : Canvas Oxford 100% Polyester PU coating | Lining and padding : 100% polyester | Seams : Waterproof | Waist : Elasticated waist | Preformed knees | Number of pockets : 5

 \oplus Waterproof fabric to stay dry in medium rain

Navy blue S → 3XL

 ϵ

LAPONIE2

3M Thinsulate[™] polar fleece-lined parka with removable hood, for optimum protection from the cold down to -50°C, ideal for refrigeration workers

Material: Twill 85% Polyester 15% Cotton | Lining and padding: 100% polyester | Removable by zip hood | Upper neck polar lining | Waist: Cord adjustment | Inner wrist: Ribbed cuff | Number of pockets: 6

 ϵ

AUSTRAL2

3M Thinsulate™ fleece-lined dungarees with hood, for optimum protection from the cold down to -50°C, ideal for refrigeration workers

Material : Twill 85% Polyester 15% Cotton | Lining and padding : 100% polyester | Number of pockets : 4

Navy blue M → 2XL

 ϵ

IGLO02

3M Thinsulate[™] polar fleece-lined coveralls with hood, for optimum cold protection down to -45°C, ideal for refrigeration workers

Material : Twill 85% Polyester 15% Cotton | Lining and padding : 100% polyester | Fixed hood | Waist : Elastic back | Inner

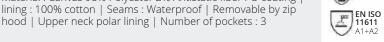
wrist: Ribbed cuff | Number of pockets: 6

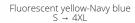
Navy blue M → 2XL

Chemical resistant - Flame retardant - Antistatic

Navy blue XS → 4XL

KOMODO2




⊕ PU coating for greater breathability

Waterproof, multi-risk parka, suitable for access to ATEX zones Material: Canvas 98% Polyester 2% Antistatic fiber PU coating |

High-visibility, waterproof, multi-risk parka, suitable for access to

Material: Canvas 98% Polyester 2% Antistatic fiber PU coating |

lining: 100% cotton | Seams: Waterproof | Removable by zip hood | Upper neck polar lining | Number of pockets : 3

KOMODO2HV

ATEX zones

⊕ PU coating for greater breathability

Navy blue S → 4XL

MAIVE2

to ATEX zones

Number of pockets: 3

EN61482-2 FIIM = 5.4cal/cm² APC 1

 \oplus Laboratory-tested garment for optimum performance in up to 50 washes at 60°C

Multi-risk work jacket suitable for electricians, welders and access

Material: Twill 99% Cotton 1% Antistatic fiber - 320 g/m² |

Navy blue S → 4XL

MAIPA2

Cut: Regular | Material: Twill 99% Cotton 1% Antistatic fiber -320 g/m² | Waist : Elasticated sides | Preformed knees | Number of pockets: 6

① Laboratory-tested garment for optimum performance in up to 50 washes at 60°C

EN14404

EN61482-2 ELIM = 5,4 cal/cm²

EN1149-5

EN ISO EN1440 11612 Type 2 A1 A2 B1 C1 Level 0 E3 F1 EN14404

Multi-risk overalls suitable for electricians, welders and access to ATEX zones

MAICO₂

SWEFR2

POLFR2

SSVFR2

Cut: Regular | Material: Twill 99% Cotton 1% Antistatic fiber -320 g/m² | Waist : Elasticated sides - Elastic back | Number of pockets: 5

 \oplus Laboratory-tested garment for optimum performance in up to 50 washes at 60°C

EN61482-2 ELIM = 15 cal/cm² APC 1

Multi-risk sweat-shirt suitable for electricians and access to ATEX zones

Material: Plain stitch 60% Modacrylic 39% Cotton 1% Antistatic fiber - 300 g/m²

Navy blue S → 4XL

⊕ Multi-risk marking for easy identification in high-risk areas

EN61482-2 ELIM = 5,2 cal/cm² APC 1

EN ISO 11611

Multi-risk polo t-shirt suitable for electricians and access to ATEX zones

Material: Pique stitch 60% Modacrylic 39% Cotton 1% Antistatic fiber - 210 g/m²

 \oplus Multi-risk marking for easy identification in high-risk areas

EN61482-2 ELIM = 5,4 cal/cm² APC 1

EN ISO 11611

Multi-risk undergarment set, suitable for electricians and access to ATEX zones

Material: Pique stitch 60% Modacrylic 39% Cotton 1% Antistatic fiber - 200 g/m²

Flame retardant - Antistatic

MAICA2

ATEX zones

EN61482-2 ELIM = 5,4 cal/cm² APC 1

 \oplus Laboratory-tested garment for optimum performance in up to 50 washes at 60°C

Multi-risk balaclava suitable for electricians, welders and access to

Material: Twill 99% Cotton 1% Antistatic fiber - 320 g/m²

Navy blue

Multi-risk balaclava suitable for electricians and access to ATEX

Material: Plain stitch 60% Modacrylic 39% Cotton 1% Antistatic

CAGFR2

fiber - 200 g/m²

zones

SUMVES

 ϵ

SUMPAN

Leather work pants for class 2 welding applications Material : 100% Leather | Number of pockets : 2

Leather apron for use by a class 2 welder Material : 100% Leather

1 → 3XI

 ϵ

SUMTAB

Grey

 ϵ

SUMGUE

Grey

Pair of leather safety guards for use by a class 2 welder Material : 100% Leather

(€

SUMMAN

Leather cuff for use by a class 2 welder Material : 100% Leather

TABALPV

Waterproof apron for use in the food industry Material: 100% PVC

White

TABNIT

Multi-purpose PVC/Nitrile apron Material : PVC/Nitrile - 500 g/m²

Green

TABLIVE

Waterproof multi-purpose apron with interior/exterior coating for use in damp environments
Material: 100% Polyester Double-sided PVC coating

White

TABPU

PU apron for use in the food industry Material : 100% Polyuréthane - 350 g/m²

 ϵ

CO600

Overalls for type 3 chemical protection Material : Support 100% Polyester Double-sided PVC coating 380 g/m² | Seams : Thermo-welded | Fixed hood

(€

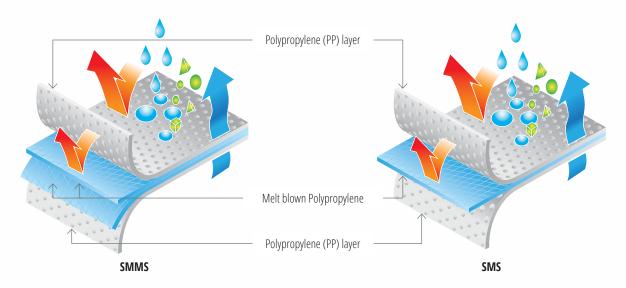
HO600

Balaclava for chemical protection type PB4 Material: Support 100% Polyester Double-sided PVC coating 380 g/m²

MATERIALS

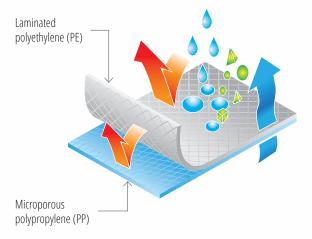
POLYETHYLENE (PE)

POLYPROPYLENE (PP)

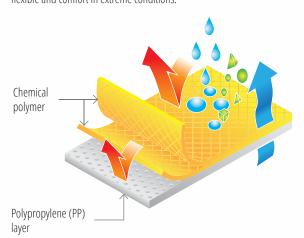

Is a flexible plastic fibre which provides good chemical resistances.

Is a nonwoven breathable fibre which provides excellent comfort.

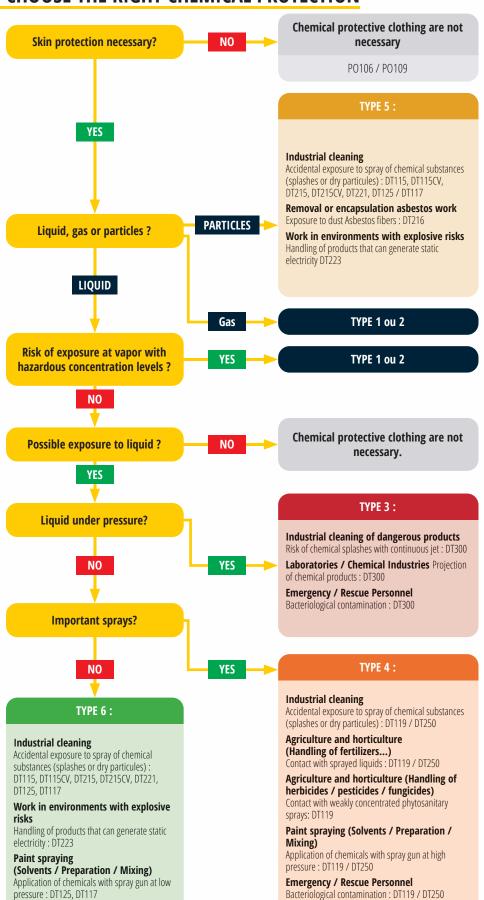
SMS/SMMS POLYPROPYLENE - MELT BLOWN POLYPROPYLENE - POLYPROPYLENE - DT2XX


The combination of the three polypropylene (PP) layers provides exceptional protection and provides a breathable non-woven material.

The melt blown is incorporated with warm air to form a chemical barrier. The other two layers make the combination flexible and breathable.


LAMINATED MICROPOROUS MATERIAL - DT1XX

The combination of a polypropylene (PP) layer and a Polyethylene layer (PE) ensures outstanding properties and excellent protection against most chemical products and particles. The non-woven material is very resistant and lint free.


DELTACHEM POLYPROPYLENE + CHEMICAL BARRIER - DT3XX

The combination of several high performance polymer layers (chemical barrier) combines with several polypropylene (PP) layers, which provides exceptional breathable protection. The polypropylene (PP) with the chemical barrier ensure flexible and comfort in extreme conditions.

CHOOSE THE RIGHT CHEMICAL PROTECTION

STANDARDS

EN14605TYPE 3

Protective clothing against liquid chemicals (sprays).

EN14605

TYPE 4

Protective clothing against liquid chemicals (mists).

EN ISO 13982-1

TYPE 5

Protective clothing for use against solid particles (dust - asbestos).

EN13034

TYPE 6

Protective clothing against liquid chemicals (splashes).

EN14126

TYPE 3(B)

TYPE 4(B)

Protective clothing against infective agents.

EN1149-5

Protective clothing to dissipate static electricity.

EN ISO 14116

Protective clothing against flame.

EN ISO 27065

Protective clothing against pesticides

Chemical protection overalls

Yellow M → 2XL

DT300 DELTACHEM

Material : Textile - Deltachem | Fixed hood | Inner wrist : Double elastane thumb

Inner wrist: Double elastane thumb

⊕ Non-slip soles ideal for slippery environments

coveralls offering a good fit and added comfort

DT250

Type 4, disposable spray-resistant chemical protective coveralls offering a good fit and enhanced protection

Material: Textile - Polyethylene - Polypropylene | Fixed hood |

Type 3 anti-static, waterproof, disposable chemical protective

 $C \in$

DT119

Type 4, disposable, anti-static, spray-resistant chemical protective coveralls offering a good fit and enhanced protection Material: Textile - Rolled microporous | Fixed hood | Inner wrist: Ribbed cuff

White M → 2XL

DT117

Type 5, disposable, anti-static, dry particle resistant chemical protective coveralls offering a good fit and enhanced protection Material: Textile - Rolled microporous | Fixed hood | Inner wrist: Ribbed cuff

DT125

Type 5 anti-static, disposable, dry particle resistant chemical protective coveralls with good fit and enhanced breathability

Material: Textile - Rolled microporous - SMS | Fixed hood | Inner wrist: Elastane thumb

DT221

Type 5, disposable, highly breathable dry particle resistant chemical protective coveralls Material : Textile - SMMS | Fixed hood

x 20

EN ISO 13982-1

Type 5, disposable, flame resistant, highly breathable dry particle resistant chemical protective coveralls Material : Textile - SMMS | Fixed hood

 $\ensuremath{\oplus}$ Flame-retardant material to limit the spread of flame

Type 5 disposable, dry particle resistant chemical protective coveralls with enhanced breathability Material: SMS | Fixed hood

White M → 2XL

Chemical protection overalls

White M → 3XL

DT215CV

Type 5 disposable, dry particle resistant chemical protective coveralls without hood with enhanced breathability Material: SMS

DT216

Type 5 disposable, dry particle resistant chemical protective coveralls with enhanced breathability and taped seams Material: SMS \mid Fixed hood

DT115

Type 5 disposable, anti-static, dry particle resistant chemical protective coveralls with enhanced breathability Material : Textile - Rolled microporous | Fixed hood

DT115CV

Type 5 disposable, anti-static, dry particle resistant chemical protective coveralls without hood with enhanced breathability Material: Textile - Rolled microporous | Fixed hood

 $C \in$

PO106

Short sleeve coveralls with elasticated ends, ideal for use in the

Material: Textile - Polypropylene | Fixed hood

Coveralls with elasticated cuffs for short use Material : Textile - Polypropylene | Fixed hood

White M → 2XL

 $C \in$

PO109

Blue L → 2XL

BLOUSPE

Disposable blouse sold in packs of 100 pieces, ideal for the food processing environment

White

BLOUSPO

Disposable blouse offering comfort and breathability, ideal for food processing environment Material : Textile - Polypropylene | Material : 30 g/m²

White M → 2XL

x 10

TABPO02

Disposable aprons sold in packs of 100 pieces Material: Polyethylene

White

KITVI

Visitor kit sold in packs of 100 pieces, offering gown/ cap/ mask/

This kit contains: 1x BLOUSEPE, 1x PO111, 1x MASQU2, 1x SURCHPE

PO110

Material: Textile - Polypropylene

PO115

Chin/beard protector with elasticated edge sold in packs of 100

Material: Textile - Polypropylene

White

TOQUE

Adjustable cap sold in packs of 10 pieces Material: Cellulose

25 x

20 x

20 x

Blue

MANCHBE

Protective sleeve sold in packs of 100 pieces, providing good support, ideal for the food environment Material : Polyethylene

White

MANCHBL

Protective sleeve sold in packs of 100 pieces offering comfort and support, ideal for the food environment Material : Polyethylene

DT302 DELTACHEM

Type 3 anti-static, waterproof disposable chemical sleeve with a good fit Material : Textile

DT301 DELTACHEM

Anti-static, waterproof, type 3 disposable chemical protective overboot with good fit and anti-slip system Material : Textile

DT111

Protective overboot sold in packs of 50 pieces, combining breathable material and elastic band for a snug fit Material : Textile - Rolled microporous

x 5

SURCHPLUS

Protective overshoe sold in packs of 50 pieces offering a waterproof sole while combining breathability and foot support Material : Textile - Polyethylene - Polypropylene

Blue-White

x 20

SURCHPE

Protective overshoe sold in packs of 50 pieces with elastic band for a snug fit

Material: Polyethylene

SURCHPO

Protective overshoe sold in packs of 50 pieces, combining breathable material and elastic band for a snug fit Material : Textile - Polypropylene

White

Sport

Performance	215
Design	216
Casual	217
Performance	225
Indoor	
Manufacturing	218
Heavy duty	222
Food industry	223
Manufacturing	236
Outdoor	
Waterproof	226
Utilities	227
Construction	230
Ladies & Gentlemen	
Gentlemen	235
Accessories	237
Boots	
Industry-Construction & Civil engineering	240
Food industry	243
Agriculture-Green areas	245

SOLES

	TREKWORK	WATERPROOF	OUTDOOR	OUTDOOR PROTECH		INDUSTRY	CLASSIC INDUSTRY	
	COMPOSITE	COMPOSITE	СОМР	OSITE	COMPOSITE	NO COMPOSITE	COMPOSITE	NO COMPOSITE
MATERIAL	PU / NITRILE RUBBER	PU / PU	PU /	' PU	PU	/ PU	PU .	/ PU
ADVANTAGES	 Ladder grips Flex-Zone for increased flexibility Slip-resistant cleated outsole 	 100% waterproof Deltatex membrane TPU Back reinforcement for a high wear protection and lifespan (NOMAD S3 SRC) PU bumper protection Staples specially designed for an optimal traction and a best slip- resistance on all slippery surfaces 	Ladder gripsV STAB SYSTEMFlex-Zone		Areas of integrated bending (PANOFLEX® system) System) Shock absorber		 Z grips Crampon de designed fo grip JUMPER3 S3 JUMPER3 S3 / TAKU S3 p resistant to same content of the design of the present of the design o	B FUR / B FUR HC roperties
PERFORMANCES	SRC HRO HI CI	SRC HRO HI CI	SF	ıc	s	RC	SI	RC

	SPORTSWEAR	LIGHT WALKERS		EXECUTIVE	LADIES	AGRO	
	COMPOSITE	COMPOSITE	COMPOSITE NO COMPOSITE		COMPOSITE	NO COMPOSITE	NO COMPOSITE
MATERIAL	PU / NITRILE RUBBER PHYLON RUBBER	PU / PU	PU MON	O DENSITY	PU MONO DENSITY	PU / PU	PU MONO DENSITY
ADVANTAGES	 Phylon midsole for effective cushioning Rubber outsole for improved abrasion resistance Crampon design specially designed for optimum grip Available in ESD version (MEMPHIS S1P ESD) 	Step rolling (VIAGI S1P ESD et MIAMI S1P ESD) Upper Mesh (ASTI S1P/VIAGI S1P ESD/VIRAGE S1P) or knitted (SLIMMER S1P) for hetter ventilation of		Non-metallic Lightness and flexibility		Microfibre upper	
PERFORMANCES	SRC HRO		SRC		SRC	SRC	SRC

Black-Yellow 39 → 47

 $C \in$

EN ISO 20345 S1P HRO FO A E ESD SRC

MEMPHIS S1P ESD SRC

Sporty design, low cut, ESD compatible shoe Upper: Textile - Polyester | Lining: Textile - Polyester - Breathable | Insole: EVA | Outsole: Welded - EVA - Nitrile | Reinforcements: PU - TPU | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system : Laces | Weight : 508 g per shoes

⊕ Enhanced protection against electrostatic discharge

 $C \in$

EN ISO 20345 S1P HRO FO A E SRC

BOSTON S1P SRC

Black 39 → 47

Sporty design, low cut shoe with increased durability due to the technical construction of the upper Upper : Textile - Polyester - PU deeped | Lining : Textile - Polyester - Breathable | Insole : EVA | Outsole : Welded - EVA -Nitrile | Reinforcements : PU - TPU | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 504 g per shoes

⊕ Flexible sole to reduce fatigue during use

 $C \in$

EN ISO 20345 S3 HRO WRU FO A E

MANHATTAN S3 SRC

Black-Yellow

Sporty design, high cut shoe, combining ergonomics and comfort Upper : Leather - Split Leather - Velvet | Lining : Textile - Polyester - Breathable | Insole : EVA | Outsole : Welded - EVA - Nitrile | Reinforcements: Rubber | Anti-perforation insert: Metal free Security toe-cap : Composite | Lacing system : Laces | Weight 568 g per shoes

 \oplus Metal-free: get through every security gate without a hitch thanks to the absence of metal.

 $C \in$

S3 HRO WRU FO A E SRC

BROOKLYN S3 SRC

Black-Orange

Sporty design, low cut shoe, combining ergonomics and comfort Upper: Leather - Split Leather - Velvet | Lining: Textile - Polyester - Breathable | Insole : EVA | Outsole : Welded - EVA - Nitrile | Reinforcements : Rubber | Anti-perforation insert : Metal free Security toe-cap : Composite | Lacing system : Laces | Weight : 524 g per shoes

⊕ Grip on the ground

Blue-Yellow 39 → 47

Black-Red 39 → 47

DELTA SPORT S1P SRC

Sporty design, low cut shoe with technical construction, the best compromise between breathability and durability Upper: Textile - Polymere - PU deeped | Lining: Textile - Polyester - Absorbing | Insole: EVA | Outsole: Welded - EVA - Nitrile | Reinforcements: PU | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 482 green shoes 482 g per shoes

 \oplus Metal-free: get through every security gate without a hitch thanks to the absence of metal.

EN ISO 20345 S3S HRO WPA FO A E

High cut shoe with a trendy look, for work or for the city Upper: Leather - Nubuck | Lining: Polyester | Insole: EVA -Polyester | Outsole: Welded - PU - Rubber | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 842 g per shoes

 \oplus Stabilisation of the foot when walking

Casual Sport

EN ISO 20345
S3 HRO WRU FO A E

D-SPIRIT S3 SRC

Lightweight and sporty low cut shoe
Upper: Leather - Grain Leather | Lining: Textile - Polyester Breathable | Insole: EVA | Outsole: Welded - PU - Nitrile |
Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 540 g per shoes

EN ISO 20345 S1P HRO FO A E SRC

D-SPIRIT S1P SRC

Lightweight and sporty low cut shoe
Upper: Leather - Textile - Velvet | Lining: Textile - Polyester Breathable | Insole: EVA | Outsole: Welded - PU - Nitrile |
Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 498 g per shoes

EN ISO 20345 S1P HRO FO A E SRC

D-SPIRIT S1P SRC

Lightweight and sporty low cut shoe
Upper: Leather - Split Leather - Velvet | Lining: Textile Polyester - Breathable | Insole: EVA | Outsole: Welded - PU Nitrile | Anti-perforation insert: Metal free | Security toe-cap:
Composite | Lacing system: Laces | Weight: 514 g per shoes

EN ISO 20345
S1 P HRO FO A E SRC

D-STAR S1P SRC

Lightweight, sporty high shoe Upper: Leather - Split Leather - Velvet | Lining: Textile -Polyester - Breathable | Insole: EVA | Outsole: Welded - PU -Nitrile | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 534 g per shoes

EN ISO 20345 S1P HRO WPA FO A E SRC

SMASH S1P SRC

Sporty low cut shoe
Upper: Leather - Split Leather | Lining: Textile - Polyester |
Insole: EVA | Outsole: Welded - Rubber - Nitrile |
Anti-perforation insert: Metal free | Security toe-cap:
Composite | Lacing system: Laces | Weight: 604 g per shoes

Grey-Green 36 → 48

EN ISO 20345 S1PS FO A E

High-cut shoe with Panoflex technology for better torsion control and walking stability

Upper: Leather - Textile - Split Leather - Velvet | Lining: Textile - Polyester | Insole: EVA - Foam | Outsole: Injected - PU - 2d | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 612 g per shoes

① Padded tongue to reduce pressure points in the lacing area

Black-Red 36 → 48

VIAGI S1P SRC ESD

20345 S1PS FO A E ESD SR

Black-Red 36 → 48

Lightweight, breathable low cut shoe, ideal for ESD environments Upper: Leather - Textile - Split Leather - Velvet | Lining: Textile -Polyester | Insole : EVA - Foam | Outsole : Injected - PU - 2d | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 610 g per shoes

⊕ Enhanced protection against electrostatic discharge

Grey-Blue 36 → 48

ASTI S1P SRC

EN ISO 20345 S1PS FO A E

Low cut shoe with Panoflex technology for better torsion control and walking stability

Upper: Leather - Textile - Split Leather - Velvet | Lining: Textile -Polyester | Insole : EVA | Outsole : Injected - PU - 2d |
Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 544 g per shoes

 \oplus Padded tongue to reduce pressure points in the lacing area

Beige 36 → 48

Black $36 \rightarrow 48$

CE EN 203 S1F

x 10

COMO S1P SRC

Navy blue 35 → 48

Lightweight, breathable low cut shoe for all day comfort Upper: Leather - Textile - Polyester - Mesh - Split Leather - Velvet | Lining: Textile - Polyester | Insole: EVA - Polyester | Outsole: Injected - PU | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Lacing system: Laces | Weight: 508 g per shoes

⊕ Lightweight product to reduce fatigue throughout the day

Black-Fushia 35 → 43

Brown-Beige 35 → 48

ARONA S1P SRC

Lightweight and flexible high cut shoe, for all-day comfort Upper: Textile | Insole: EVA - Polyester | Outsole: Injected - PU | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Lacing system: Laces | Weight: 486 g per shoes Beige 35 → 48 Black 35 → 48

 \oplus Lightweight product to reduce fatigue throughout the day

SUMMER S1P SRC

Very light and breathable low-cut shoe for all day comfort Upper : Textile - Polyester - Cotton | Insole : EVA - Polyester | Outsole : Injected - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 406 g per shoes

① Lightweight product to reduce fatigue throughout the day

Blue-Yellow 35 → 48

MIAMI S1P SRC

EN ISO 20345 S1P FO A E SRC

Lightweight and flexible low cut shoe, for all-day comfort Upper : Textile - Polyester - Cotton | Insole : EVA - Polyester |
Outsole : Injected - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : None | Weight : 442 g per shoes

⊕ Lightweight product to reduce fatigue throughout the day

Khaki

MIAMI S1P CAMO SRC

EN ISO 20345 S1P FO A E SRC

Grey-Navy blue 35 → 48

Upper: Textile - Polyester - Cotton | Insole: EVA - Polyester | Outsole: Injected - PU | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Lacing system: None | Weight: 442 g per shoes

① Lightweight product to reduce fatigue throughout the day

Black $35 \rightarrow 48$

MIAMI S1P SRC ESD

Lightweight, flexible low cut shoe, ideal for ESD environments Upper : Polyester - Cotton | Insole : EVA - Polyester | Outsole : Injected - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : None | Weight : 456 g per shoes

 \oplus Enhanced protection against electrostatic discharge

 $C \in$ S1P FO A E SRC

x 10

TANGARA2 S1P SRC

Grey-Yellow 36 → 47

High-cut shoe, combining durability and breathability, as well as optimal grip on all surfaces

Upper: Leather - Split Leather - Velvet | Lining: Polyamid -Absorbing | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 601 g per shoes

Beige-Yellow 36 → 47

Grey 36 → 47

Grey 36 → 47

⊕ Ladder side grip: sole design for good grip on ladders

EN ISO 20345 S1P FO A E SRC $C \in$

RIMINI4 S1P SRC

Low-cut shoe, combining durability and flexibility, as well as

optimal grip on all surfaces Upper : Leather - Split Leather - Velvet | Lining : Polyamid -Absorbing | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 594 g per shoes

Navy blue-Orange 36 → 47

⊕ Ladder side grip: sole design for good grip on ladders

EN ISO 20345 $C \in$ S1P FO A E

FENNEC4 S1P SRC

Low-cut shoe, combining durability and breathability, as well as optimal grip on all surfaces

Upper: Leather - Split Leather - Velvet | Lining: Polyamid - Absorbing | Insole: EVA - Polyester | Outsole: Injected - PU - 2d | Anti-perforation insert: Stainless steel | Security Co20-Stainless steel | Lacing system : Laces | Weight : 628 g per shoes

⊕ Ladder side grip: sole design for good grip on ladders

 $C \in$ S1 FO A E SRC

FENNEC4 S1 SRC

Low-cut shoe, combining durability and breathability, as well as optimal grip on all surfaces

Upper : Leather - Split Leather - Velvet | Lining : Polyamid -Absorbing | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : None | Security toe-cap : Stainless steel | Lacing system: Laces | Weight: 477 g per shoes

⊕ Ladder side grip: sole design for good grip on ladders

Black 36 → 48

Black 36 → 47

COBRA4 S3 SRC

10 x

EN ISO 20345 S3 HRO HI WRU FO A E

Wetling's Specific High-red's 31/62, stantage 12/03/92
Upper: Leather - Croupon - Pigmented - Water repellent | Lining: Textile - Polyester | Insole: EVA - Polyamide | Outsole: Injected - PU - Nitrile rubber | Reinforcements: Para-aramid stitching | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Lacing system: Velcro | Weight: 726 g per shoes

 \oplus Sole designed to with stand contact heat up to 300°C

Welding-specific high-cut shoe, standard 20349-2

EN ISO 20345 S3 WRU FO A E M SRC

MIWA S3 M SRC

High-cut shoe for the heavy industry with good metatarsal protection

Upper: Leather - Croupon - Pigmented - Water repellent | Lining : Textile - Mesh polyamid | Insole : EVA - Polyester | Outsole : PU - 2d | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 699 g per shoes

 \oplus Integrated metatarsal protection to absorb and evenly distribute impact energy

 ϵ

EN ISO 20345 S2 WRU FO A F SRC

MIAMI S2 SRC

Lightweight microfibre low-cut shoe with a water-repellent upper, meeting the requirements of the food industry and hygiene professions

Upper : Textile - Microfibre - PU deeped | Insole : EVA - Polyester | Outsole : Injected - PU | Anti-perforation insert : None | Security toe-cap : Stainless steel | Lacing system : None | Weight : 402 g per shoes

⊕ Machine washable up to 30° for easy care.

 $C \in$

EN ISO 20345 S2 WRU FO A E SRC

ROBION3 S2 SRC

Low-cut microfibre shoe, ideal for the food industry Upper : Microfibre | Lining : Polyamid | Insole : EVA - Polyamide | Outsole : Injected - PU - 2d | Anti-perforation insert : None | Security toe-cap : Stainless steel | Lacing system : None | Weight : 468 g per shoes

curity toe-cap : Stainless steel | Lacing system : None | Weight : 8 g per shoes

⊕ Streamlined design for easy day-to-day cleaning

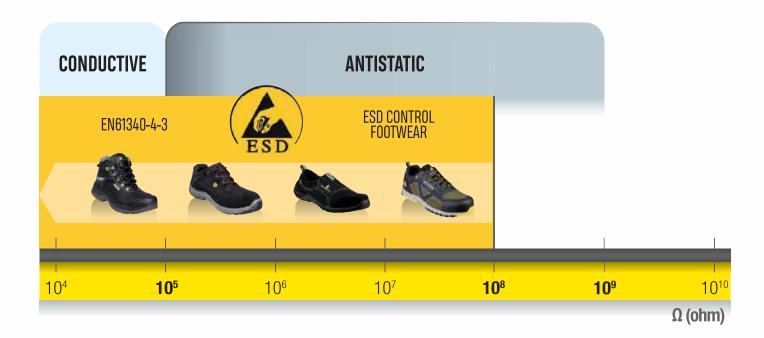
 ϵ

EN ISO 20345 SBEA A E SRC

MAUBEC 3 SBEA SRC

Microfibre work clogs ideal for the food industry Upper: Microfibre | Lining: Polyamid - Absorbing | Insole: EVA -Polyamide | Outsole: Injected - PU - 2d | Anti-perforation insert: None | Security toe-cap: Stainless steel | Lacing system: Velcro -None | Weight: 524 g per shoes

 \oplus Streamlined design for easy day-to-day cleaning


WHAT DOES THE REGULATION SAY?

The requirements for the design, establishment, implementation and maintenance of electrostatic discharge control devices (ESD) that can damage electronic components are defined by standard EN61340-5-1.

The device called "ESD» is used to control electrical discharges for manufacturing, processing, assembly, packaging, maintenance, testing, inspection, transport or handling of electrical or electronic parts, assemblies and equipment that may be damaged by electrostatic discharges.

To be usable in an ESD device, a shoe must at least be qualified according to the test methods of EN IEC 61340-4-3 and offer an electrical resistance lower than 10° Ω.

SAULT2 ESD, VIAGI ESD, MIAMI ESD and MEMPHIS ESD meet this level of resistance required for compliance. These shoes, thanks to their low electrical resistance, limit the risk of electrostatic discharge.

RISK OF ELECTROSTATIC DISCHARGE (ESD*)

Static electricity present on operators must be controlled in the following areas of use, as it can:

- damage materials to sensitive electric shock: various electronic and electrical industries \dots
- generate particles likely to be deposited on the paint: automotive industry, household appliances ...

The purpose of ESD control is to protect the electronic equipment being handled and not the wearer.

* Electrostatic Discharge

 $C \in$

EN ISO 20345 S1P HRO FO A E ESD SRC

MEMPHIS S1P ESD SRC

Black-Yellow 39 → 47

Sporty design, low cut, ESD compatible shoe

Upper: Textile - Polyester | Lining: Textile - Polyester - Breathable | Insole: EVA | Outsole: Welded - EVA - Nitrile | Reinforcements: PU - TPU | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system : Laces | Weight : 508 g per shoes

⊕ Enhanced protection against electrostatic discharge

 $C \in$

20345 S1PS FO A E ESD SR

VIAGI S1P SRC ESD

Black-Red 36 → 48

Lightweight, breathable low cut shoe, ideal for ESD environments Upper: Leather - Textile - Split Leather - Velvet | Lining: Textile - Polyester | Insole: EVA - Foam | Outsole: Injected - PU - 2d | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system : Laces | Weight : 610 g per shoes

⊕ Enhanced protection against electrostatic discharge

 $C \in$

EN ISO 20345 S3 WRU FO A E ESD SRC

SAULT2 S3 SRC ESD

Black

High-cut shoe with a wider fit and robust construction for ESD environments

Upper: Leather - Croupon - Pigmented - Water repellent | Lining: Textile - Polyamid | Insole : EVA - Polyamide | Outsole : Injected - PU - 2d | Reinforcements : PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight: 734 g per shoes

⊕ Shock-absorbing heel to relieve joint strain

 $C \in$

EN ISO 20345 S1P FO A E ESD SRC

MIAMI S1P SRC ESD

Black

Lightweight, flexible low cut shoe, ideal for ESD environments Upper: Polyester - Cotton | Insole: EVA - Polyester | Outsole: Injected - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : None | Weight : 456 g per shoes

⊕ Enhanced protection against electrostatic discharge

Black 39 → 48

Brown 39 → 48

NOMAD3 S7S SR

EN ISO 20345 S7S CI HI WR FO A E

EN ISO 20345 S7 CI HI WR FO A E SR

Waterproof high cut shoe thanks to its DELTATEX membrane,

Waterproof high cut shoe thanks to its DELIATEX membrane, dedicated to outdoor environments
Upper: Leather - Grain Leather | Lining: Membrane - Polyester - Delta-Tex - Breathable | Insole: EVA - Polyester | Outsole: Injected - PU - 2d | Reinforcements: TPU | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 805 g per shoes

⊕ Waterproof design prevents water penetration

 ϵ

SAMY3 S7 SR

⊕ Waterproof design prevents water penetration

Utilities Outdoor

EN ISO 20345 S1PS CI HI FO A E SR $C \in$

x 5

DENALI S1PS SR

Grey 36 → 48

Lightweight, breathable high-cut shoe for industrial use. Upper: Leather - Split Leather - Velvet | Lining: Mesh - 3d | Insole: Polyester - PU | Outsole: Injected - PU - 2d | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 560 g per shoes

⊕ Lightweight product to reduce fatigue throughout the day

EN ISO20345
S1PS CI HI
FO A E SR $C \in$

CINTO S1PS SR

Grey 36 → 48

Lightweight, breathable, low-cut shoe for industrial use. Upper: Leather - Split Leather - Velvet | Lining: Mesh - 3d | Insole: Polyester - PU | Outsole: Injected - PU - 2d | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system : Laces | Weight : 540 g per shoes

⊕ Lightweight product to reduce fatigue throughout the day

 $C \in$

EN ISO 20345 S3S CI HI WPA FO A E

JAYA S3S SR

Brown

Brown

Comfortable, high-performance high-cut shoe with reinforcement for demanding environments. Upper: Textile - Grain leather coated in PU - Bovine leather - PU

deeped | Lining : Mesh - 3d | Insole : Polyester - PU | Outsole : Injected - PU - 2d | Reinforcements : Leather - PU | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 570 g per shoes

⊕ High stability ensured by the sole's grip properties

 $C \in$

EN ISO 20345 S3S CI HI WPA FO A E SR

EIGER S3S SR

Comfortable, high-performance low-cut shoe with reinforcement for demanding environments.

Upper: Textile - Grain leather coated in PU - Bovine leather - PU deeped | Lining: Mesh - 3d | Insole: Polyester - PU | Outsole: Injected - PU - 2d | Reinforcements : Leather - PU |
Anti-perforation insert : Metal free | Security toe-cap : Composite

| Lacing system : Laces | Weight : 550 g per shoes

⊕ Shock-absorbing heel to relieve joint strain

PHOENIX2 S3S SR

EN ISO 20345 S3S CI HI WPA FO A E

Non-magnetic high-cut shoe with robust construction, thanks to quadruple stitching. Upper : Leather - Croupon - Pigmented - Water repellent | Lining :

Textile - Mesh polyamid | Insole : Polyester - PU | Outsole : Injected - PU - 2d | Anti-perforation insert : Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 570 g per

⊕ Stabilisation of the foot when walking

PHOCEA2 S3S SR

S3S CI HI WPA FO A E

Non-magnetic low-cut shoe with robust construction, thanks to quadruple stitching

Upper: Leather - Croupon - Pigmented - Water repellent | Lining : Textile - Mesh polyamid | Insole : Polyester - PU | Outsole : Injected - PU - 2d | Anti-perforation insert : Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 500 g per

 Built to last: 4 stitching, robust materials, front and rear reinforcements

AURIBEAU3 S1P SRC

20345 S1PS FO A E

Durable, breathable, non-magnetic high-cut shoe with wide, high studs for all types of soil

Upper: Leather - Textile - Mesh - Split Leather - Velvet | Lining: Textile - Polyester | Insole : EVA - Polyamide | Outsole : Injected - PU - 2d | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 640 g per shoes

⊕ Stabilisation of the foot when walking

Green-Black

PERTUIS3 S1P SRC

Low-cut non-magnetic shoe, combining durability and breathability, with wide and high crampons, for all types of soil Upper : Leather - Textile - Mesh - Split Leather - Velvet | Lining : Textile - Polyester | Insole : EVA - Polyamide | Outsole : Injected -PU - 2d | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 622 g per shoes

⊕ Stabilisation of the foot when walking

Utilities Outdoor

 ϵ

EN ISO 20345 S1P FO A E

GARGAS II S1P SRC

Black 35 → 48

High-cut shoe with robust construction for optimum durability Upper: Leather - Croupon - Pigmented | Lining: Textile - Polyamid | Insole: EVA - Polyester | Outsole: Injected - PU - 2d | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Lacing system: Laces | Weight: 644 g per shoes

⊕ Padded collar for comfort and ankle support

EN ISO 20345 S1 P FO A E SR

GOULT II S1P SRC

Black 35 → 48

Low-cut shoe with robust construction for optimum durability Upper: Leather - Croupon - Pigmented | Lining: Textile - Polyamid | Insole: EVA - Polyester | Outsole: Injected - PU - 2d | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Lacing system: Laces | Weight: 636 g per shoes

⊕ Padded collar for comfort and ankle support

GOBI S3 SRC

EN ISO 20345 S3 WRU FO A E CR SRC

High shoe with reinforcement, dedicated to the construction

Upper: Grain leather coated in PU - Bovine leather | Lining: Textile - 3D lining - Mesh - 3d - Breathable | Insole : EVA -Polyester | Outsole : Injected - PU - 2d | Reinforcements : Leather - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Composite | Lacing system : Laces | Weight : 670 g per shoes

⊕ Stabilisation of the foot when walking

ATACAMA S3 SRC

S3 WRU FO A E CR SRC

Ranger with reinforcement dedicated to the construction world Upper: Grain leather coated in PU - Bovine leather | Lining: Textile - Mesh - 3d - Breathable | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Reinforcements : Leather - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Composite | Lacing system : Laces | Weight : 740 g per shoes

⊕ Stabilisation of the foot when walking

Brown

TAKU S3 CI SRC

Lined boot with reinforcement for the construction industry Upper: Grain leather coated in PU - Bovine leather | Lining: Polyester - Synthetical-fur - Isotermic | Insole : Felt | Outsole : Injected - PU - 2d | Reinforcements : Leather - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Composite | Weight: 740 g per shoes

⊕ Stabilisation of the foot when walking

 ϵ

EN ISO 20345 S3 CI WRU FO A E CR SRC

 $C \in$ 20345 S3S WRU FO A E CR SR

SANTANA S3 SRC

Black 39 → 48

Non-magnetic high-cut shoe with a wider fit and robust

construction for the construction industry
Upper: Buffalo leather - Smooth - Water repellent | Lining: Textile - Polyester | Insole : EVA - Polyamide | Outsole : Injected -PU - 2d | Reinforcements : PU | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight: 720 g per shoes

Construction

⊕ Wide shape to accommodate stronger foot morphologies

CALYPSO S3 SRC

Black 39 → 48

Robust non-magnetic ranger for the construction industry, with a wider fit and robust construction

Upper: Buffalo leather - Smooth - Water repellent | Lining:
Textile - Polyester | Insole: EVA - Polyamide | Outsole: Injected PU - 2d | Reinforcements: PU | Anti-perforation insert: Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight: 856 g per shoes

⊕ Wide shape to accommodate stronger foot morphologies

EN ISO 20345 $C \in$ S3S WRU FO A E CR SR

MAESTRO S3 SRC

Black $39 \rightarrow 48$

Robust, non-magnetic, low-cut shoe with a wider fit, for the construction industry

Upper: Buffalo leather - Smooth - Water repellent | Lining: Textile - Polyester | Insole : EVA - Polyamide | Outsole : Injected - PU - 2d | Reinforcements : PU | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight: 670 g per shoes

⊕ Wide shape to accommodate stronger foot morphologies

EN ISO 20345 S3 CI WRU FO A E SR $C \in$

CADEROUSSE S3 SRC

Fur-lined ranger with a wider fit and robust construction, for the

construction industry Upper: Leather - Grain Leather - Water repellent | Lining: Textile - Polyester - Synthetical-fur | Insole : Felt | Outsole : Injected - PU - 2d | Reinforcements : PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight: 852 g per shoes

Black

39 → 48

⊕ Stabilisation of the foot when walking

TW402 S3 SRC

20345 S3S HRO CI HI WRU FO

All-terrain high-cut shoe, combining robustness and durability, regardless of the conditions
Upper: Leather - Grain Leather - Water repellent | Lining:
Polyamid - Absorbing | Insole: EVA - Polyester - Foam | Outsole: Welded - PU - Nitrile | Reinforcements : TPU | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight : 972 g per shoes

⊕ Stabilisation of the foot when walking

TW302 S3 SRC

S3 HRO CI HI WRU FO

LG SRC SR

All-terrain low-cut shoe, combining robustness and durability, regardless of the conditions

Upper: Leather - Grain Leather - Water repellent | Lining: Polyamid - Absorbing | Insole : EVA - Polyester - Foam | Outsole : Welded - PU - Nitrile | Reinforcements : TPU | Anti-perforation insert: Metal free | Security toe-cap: Composite | Lacing system: Laces | Weight: 894 g per shoes

⊕ Stabilisation of the foot when walking

Black 39 → 48

SAULT2 S3 SRC

EN ISO 20345 S3 WRU FO A E SR

Robust high-cut shoe for the construction industry, with a wider fit and robust construction

Upper: Leather - Croupon - Pigmented - Water repellent | Lining: Textile - Polyamid | Insole: EVA - Polyamide | Outsole: Injected - PU - 2d | Reinforcements: PU | Anti-perforation insert: Stationals steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight: 736 g per shoes

⊕ Stabilisation of the foot when walking

Black 39 → 48

MONTBRUN S3 SRC

Robust low-cut shoe for the construction industry, with a wider fit and robust construction

Upper: Leather - Croupon - Water repellent | Lining: Textile -Polyamid | Insole : EVA - Polyamide | Outsole : Injected - PU - 2d | Reinforcements: PU | Anti-perforation insert: Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 702 g per shoes

⊕ Stabilisation of the foot when walking

 $C \in$

EN ISO 20345 S3 WRU FO A E SRC

JUMPER3 S3 SRC

High-cut shoe with robust construction for optimum durability Upper : Leather - Croupon - Pigmented - Water repellent | Lining : Textile - Mesh polyamid | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 582 g per shoes

Black 36 → 48

⊕ Ladder side grip: sole design for good grip on ladders

 $C \in$

EN ISO **20345** S3 WRU FO A E SRC

570 g per shoes

JET3 S3 SRC

Low-cut shoe with robust construction for optimum durability Upper: Leather - Croupon - Pigmented - Water repellent | Lining: Textile - Mesh polyamid | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : Stainless steel Security toe-cap: Stainless steel | Lacing system: Laces | Weight:

Black 36 → 48

⊕ Ladder side grip: sole design for good grip on ladders

 $C \in$

EN ISO 20345 S1P FO A E

JUMPER3 S1P SRC

High-cut shoe with robust construction for optimum durability Upper: Leather - Croupon - Pigmented | Lining: Textile - Mesh polyamid | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 598 g per shoes

Black 36 → 48

 \oplus Ladder side grip: sole design for good grip on ladders

 $C \in$

S1P FO A E

JET3 S1P SRC

Low-cut shoe with robust construction for optimum durability Upper: Leather - Croupon - Pigmented | Lining: Textile - Mesh polyamid | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 678 g per shoes

Black 36 → 48

⊕ Ladder side grip: sole design for good grip on ladders

JUMPER3 S1 SRC

High-cut shoe with robust construction for optimum durability Upper: Leather - Croupon - Pigmented | Lining: Textile - Mesh polyamid | Insole: EVA - Polyester - 2d | Outsole: Injected - PU -2d | Anti-perforation insert: None | Security toe-cap: Stainless steel | Lacing system : Laces | Weight : 556 g per shoes

⊕ Ladder side grip: sole design for good grip on ladders

Black 36 → 48

JET3 S1 SRC

Low-cut shoe with robust construction for optimum durability Upper: Leather - Croupon - Pigmented | Lining: Textile - Mesh polyamid | Insole : EVA - Polyester | Outsole : Injected - PU - 2d | Anti-perforation insert : None | Security toe-cap : Stainless steel Lacing system: Laces | Weight: 490 g per shoes

⊕ Ladder side grip: sole design for good grip on ladders

Black 36 → 48

JUMPER3 S3 FUR HC SRC

Fur-lined ranger with robust construction for the most extreme conditions

Upper: Leather - Croupon - Water repellent | Lining: Polyester -Synthetical-fur | Insole : Felt | Outsole : Injected - PU - 2d | Reinforcements : PU | Anti-perforation insert : Stainless steel Security toe-cap: Stainless steel | Lacing system: Laces | Weight: 776 g per shoes

 $\ensuremath{\oplus}$ Construction of the model for great insulation against the cold

Black 36 → 48

JUMPER3 S3 FUR SRC

High-cut shoe with robust construction for the most extreme

Upper: Leather - Croupon - Water repellent | Lining: Polyester -Synthetical-fur | Insole : Felt | Outsole : Injected - PU - 2d | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 611 g per shoes

⊕ High stability ensured by the sole's grip properties

 $C \in$

EN ISO 20345 S3 WRU FO A E SRC

BRISTOL S3 SRC

Black 39 → 48

Low-cut shoe combining style and elegance, in a 100% composite model

Upper : Leather - Grain Leather | Lining : Textile - Polyamid | Insole : EVA - Foam | Outsole : PU | Anti-perforation insert : Metal free | Security toe-cap : Composite | Lacing system : Laces | Weight: 494 g per shoes

⊕ Ergonomically designed footwear for comfortable wear

 $C \in$

EN ISO 20345 S1 FO A E SRC

RICHMOND S1 SRC

Black 39 → 48

Upper : Leather - Grain Leather | Lining : Textile - Polyamid | Insole : EVA - Foam | Outsole : Injected - PU | Anti-perforation insert : None | Security toe-cap : Composite | Lacing system :

Laces | Weight : 486 g per shoes

⊕ High stability ensured by the sole's grip properties

 $C \in$

EN ISO 20345 S1P FO A E

COMO S1P SRC

Black-Fushia

Lightweight, breathable low cut shoe for all day comfort Upper: Leather - Textile - Polyester - Mesh - Split Leather - Velvet | Lining : Textile - Polyester | Insole : EVA - Polyester | Outsole : Injected - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 508 g per shoes

 $\ \oplus$ Lightweight product to reduce fatigue throughout the day

 $C \in$

S1P FO A E

SUMMER S1P SRC

Very light and breathable low-cut shoe for all day comfort Upper: Textile - Polyester - Cotton | Insole: EVA - Polyester | Outsole : Injected - PU | Anti-perforation insert : Stainless steel Security toe-cap : Stainless steel | Lacing system : Laces | Weight : 406 g per shoes

⊕ Lightweight product to reduce fatigue throughout the day

Grey-Orange 35 → 48

MIAMI S1P SRC

Lightweight and flexible low cut shoe, for all-day comfort Upper : Textile - Polyester - Cotton | Insole : EVA - Polyester | Outsole : Injected - PU | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : None | Weight : 442 g per shoes

① Lightweight product to reduce fatigue throughout the day

46500

Spare insoles 94% Polyester 6% conductive yarn | Weight: 60 g

47600

Spare insoles 85% EVA, 15% polyester | Weight : 40 g

100% polyamide | Length: 100 cm | Weight: 10 g

Black-Grey

100% polyamide | Length : 120 cm | Weight : 10 g

PRATO

Antistatic and antibacterial socks. 64% cotton 17% polyamide16% Nostatex 3% Lycra | Weight : 82 g

⊕ Machine washable up to 30° for easy care.

Acrylic fleeced socks for boots. 100% Acrylic fur | Weight : 100 g

CHAUSSETT

x 50

CHAUSSON

 $38 \rightarrow 47$

PROTECTIVE BOOTS

A complete range of protective boots dedicated to each environment

CONSTRUCTION INDUSTRY

You are a most demanding worker. Do you face many risks, whatever the weather conditions, and you want uncompromising protective boots?

Our selection of Construction-Industry boots provide you with: a maximum level of protection, all-terrain stability as well as increased resistance to the most demanding hazards.

					<u> 40</u>	**!			*	***************************************
	N	COPPER S5	•	\$5	SRC		1102 g	48 cm	39 cm	
	M	BRONZE2 S5	999	\$5	SRA		1200 g	45 cm	37.5 cm	•
2011		IRON S5		\$5	SRC		1400 g	47 cm	38 cm	•
SAFETY EN ISO 20345	N	NICKEL S5	•	S5 CI	SRC	*300	1200 g	45 cm	27 cm	•
SAF EN ISO		ESKIMO SBHP	•	SBH P A E FO CI WR	SRC	*300	865 g	44 cm	27 cm	•
		AEROBUILD S5	• •	\$5	SR		904 g	46 cm	37.5 cm	
2022		AEROTECH S5		\$5	SR		850 g	44 cm	27 cm	
	L	AEROTECH FUR S5		\$5	SR	*300	955 g	44 cm	27 cm	
20347		FREEZE	•			*-20°C	586 g	45 cm	27 cm	
OCCUPATIONAL EN ISO 20347	N	STONE OB	••	ОВ			812 g	46 cm	39.5 cm	
		LAUTARET2	•	OB E CI	SRC	*30°C	519 g	48 cm	28 cm	•

FOOD INDUSTRY

The needs and requirements of this environment are very high. We have therefore developed a multidisciplinary range, which allows you to meet all the challenges you encounter on a daily basis: anti-slip certification, easy-to-disinfect boot and increased resistance to many aggressive agents, are the key components of our range of boots.

					<u> </u>	***			*	}
		ORGANO S4	0	S4	SRA		1100 g	47 cm	38 cm	•
11		NITRIC SB		SB FO	SRC		1130 g	42 cm	37 cm	
SAFETY EN ISO 20345 2011		KEMIS S4	•	S4 CI	SRC		1020 g	44 cm	37 cm	•
		OXID 04	•	O4 CI	SRC		946 g	44 cm	37 cm	•
2022		AEROFOOD S4		S4	SR		799 g	45 cm	37 cm	
OCCUPATIONAL EN ISO 20347 2022 2012		HEALTHIC OB	0	ОВ	SRA		369 g			
OCCUPA EN ISO 2022	1	PHYSIOHC OB	0	ОВ			765 g	46 cm	39.5 cm	

*for a boot in size 42

AGRICULTURE - GREEN SPACES

From farms to aquaculture professions and even the maintenance of green spaces, all of our boots have been designed for you. A complete range, in "green" colors , with the right levels of protection, to make your daily task easier.

					<u> </u>	***		*	*	\$
SAFETY EN ISO 20345	1	U	FISHER2 S5	\$5	SRA		1300 g	69 cm	80 cm	•
SAF EN ISO	20	A	OYSTER2 S5	\$5	SRA		3200 g	122 cm	130 cm	•
OCCUPATIONAL EN ISO 20347	2012		FROST OB	ОВ	SRA	**20°C -	1100 g	47 cm	35 cm	•
			GARDEN OB	ОВ	SRA		369 g			
			GROUNDMC OB	ОВ			620 g	41.5 cm	23.5 cm	
	2022		GROUNDHC OB	ОВ			810 g	46 cm	39.5 cm	
		L	AEROGREEN 04	O4 CI	SR		650 g	46 cm	37.5 cm	a hoot in cize 17

* for a boot in size 42

enjoy safety.

Green-Black 39 → 48

Green-Black 38 → 48

COPPER S5 SRA

Lightweight, multi-purpose safety boot for any work environment

requiring enhanced protection
Upper: PVC | Lining: Polyester | Outsole: Injected - PVC | Anti-perforation insert : Stainless steel | Security toe-cap :

Stainless steel | Weight: 1112 g per shoes

⊕ Shock-absorbing heel to relieve joint strain

Black → 48

BRONZE2 S5 SRA

20345 S5 FO A E

High performance safety boots for the construction industry Upper: PVC | Lining: Polyester | Outsole: Injected - Nitrile - PVC | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Weight : 1200 g per shoes

⊕ Shock-absorbing heel to relieve joint strain

Yellow-Black 38 → 48

→ 48

 $38 \to 48$

Navy blue-Red

IRON S5 SRC

 ϵ

EN ISO 20345 S5 FO A E

Safety boot with reinforcements for optimal protection combined with enhanced gliding performance for the most aggressive environments

Upper: PVC | Lining: Textile - Polyester | Insole: Synthetic | Outsole: Injected - Nitrile - PVC | Anti-perforation insert: Stainless steel | Security toe-cap : Stainless steel | Weight : 1400 g per shoes

 \oplus Shock-absorbing heel to relieve joint strain

Black

NICKEL S5 CI SRC

Fur-lined safety half-boot, ideal for cold climates with comfortable fit provided by the gripping straps

Upper : PVC | Lining : Textile - Polyester - Synthetical-fur - Molleton | Insole : Felt | Outsole : Injected - Nitrile - PVC | Anti-perforation insert : Stainless steel | Security toe-cap :

Stainless steel | Weight: 1200 g per shoes

① Construction of the model for great insulation against the cold

Khaki 35 → 49

EN ISO 20345 CE SB CI WR FO A E PS CR SR

x 5

ESKIMO SBHP SRC

Black 35 → 48

Canadian safety boot specially designed for use in outdoor cold conditions or in cold rooms with temperatures as low as -30°C Upper: Leather - Textile - Polyester - Grain Leather - PU deeped | Lining: Membrane - Polyester - Synthetical-fur - Delta-Tex - Isotermic | Insole: Felt | Outsole: Injected - PU - 2d | Reinforcements: PU | Anti-perforation insert: Metal free | Security toe-cap : Composite | Weight : 865 g per shoes

WATER PACKE

 \oplus Construction of the model for great insulation against the cold

AEROBUILD S5 CI FO SR

Robust, lightweight and ergonomic safety boot with design specially adapted to the construction industry Upper: PU | Lining: Polyester | Insole: PU - Textile | Outsole: Spray injection - PU | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Weight: 904 g per shoes

⊕ Lightweight product to reduce fatigue throughout the day

EN ISO 20345 $C \in$ S5 CI FO A E

AEROTECH S5 CI FO SR

⊕ Second-skin effect for a close-fitting fit

EN ISO 20345 S5 CI FO A E SR $C \in$

AEROTECH S5 FE CI FO SR

Robust, lightweight and ergonomic, fur-lined safety half-boot with a design specially adapted to the construction industry Upper: PU | Lining: Polyester - Synthetical-fur | Outsole: Spray injection - PU | Anti-perforation insert: Stainless steel | Security toe-cap: Stainless steel | Weight: 955 g per shoes

① Construction of the model for great insulation against the cold

Black 38 → 48

FREEZE

Half-boot with thick fur-lining providing ideal thermal insulation for extreme temperatures Upper: PVC | Lining: Textile - Polyester - Synthetical-fur -

Molleton | Insole : Felt | Outsole : Injected - PVC | Anti-perforation insert : None | Weight : 586 g per shoes

⊕ Ergonomically designed footwear for comfortable wear

STONE OB SRA

 ϵ

 \oplus Streamlined design for easy day-to-day cleaning

LAUTARET 2

Canadian fur-lined work boot with thermoplastic sole for temperatures as low as -30°C, ideal for light work in cold conditions

Upper : Elastomere/rubber | Lining : Polyester | Insole : Felt | Outsole : Injected - TPU | Anti-perforation insert : None |

Weight: 519 g per shoes

 \oplus Ergonomically designed footwear for comfortable wear

CE

EN ISO 20345 S4 FO A E SRA

ORGANO S4 SRA

Robust safety boot with wide studs for optimum protection Upper: PVC | Lining: Textile - Polyester | Outsole: Nitrile - PVC | Anti-perforation insert: None | Security toe-cap: Stainless steel | Weight: 1100 g per shoes

White-Grey 37 → 47

⊕ Shock-absorbing heel to relieve joint strain

 $C \in$

EN ISO 20345 SB FO A E

NITRIC SBFO SRC

Comfortable, close-fitting safety boot ideal for the food industry Upper: PVC | Lining: Coton jersey | Outsole: Injected - Nitrile - PVC | Anti-perforation insert: None | Security toe-cap: Stainless steel | Weight: 1130 g per shoes

Blue 36 → 47

⊕ High stability ensured by the sole's grip properties

 $C \in$

EN ISO 20345 S4 CI FO A E SRC

KEMIS S4 CI SRC

Smooth safety boot for quick cleaning and protection against the

cold, ideal for the food industry
Upper: PVC | Lining: Textile | Insole: Felt | Outsole: Injected Nitrile - PVC | Anti-perforation insert: None | Security toe-cap: Stainless steel | Weight: 1020 g per shoes

 $\ensuremath{\oplus}$ Construction of the model for great insulation against the cold

 $C \in$

EN ISO 20347 O4 CI A E SRC

OXID 04 CI SRC

Work boots with insulating insole, ideal for use in refrigerated environments, ensuring quick and optimal cleaning Upper : PVC | Lining : Polyester | Insole : Felt | Outsole : Injected - Nitrile - PVC | Anti-perforation insert : None | Weight : 946 g per shoes

White-Blue

① Construction of the model for great insulation against the cold

AEROFOOD S4 CI SR

EN ISO 20345 S4 CI FO A E SRC

Ultra-light and comfortable safety boot with a refined design,

specifically designed for the food industry
Upper: PU | Lining: Textile - Membrane | Insole: PU - Textile |
Outsole: Spray injection - PU | Anti-perforation insert: None | Security toe-cap: Stainless steel | Weight: 800 g per shoes

⊕ Ergonomically designed footwear for comfortable wear

White-Blue 35 → 47

HEALTHIC OB SRA

Lightweight work clogs, ideal for the food industry Upper: PVC | Lining: Textile - Polyester | Outsole: Injected - PVC | Anti-perforation insert: None | Weight: 369 g per shoes

① Lightweight product to reduce fatigue throughout the day

White-Grey 35 → 47

PHYSIOHC OB SRA

Comfortable, lightweight work boot for all types of low risk work Upper : PVC | Lining : Polyester | Outsole : PVC | Anti-perforation insert : None | Weight : 765 g per shoes

 \oplus Lightweight product to reduce fatigue throughout the day

 $C \in$ S5 FO A E SRA

FISHER2 S5 SRA

Safety thigh waders suitable for all types of work or activities in contact with water

Upper : Textile - PVC | Lining : Coton jersey | Outsole : Injected -Nitrile - PVC | Anti-perforation insert : Stainless steel | Security toe-cap : Stainless steel | Lacing system : Clip curl | Weight : 1300 g per shoes

⊕ Handles for easy product donning

EN ISO 20345 S5 FO A E SRA $C \in$

OYSTER2 S5 SRA

Safety waders providing protection up to the chest, suitable for all types of work or activities in contact with water
Upper: PVC | Lining: Textile - Polyester | Outsole: Injected Nitrile - PVC | Anti-perforation insert: Stainless steel | Security toe-cap : Stainless steel | Lacing system : Clip curl | Weight : 1600 g per shoes

⊕ Drawstring to ensure watertightness

Green-Black

Khaki-Black

EN ISO 20347 $C \in$

FROST OB SRA

Fur-lined work boot offering ideal thermal insulation, equipped with a lace-up collar to adjust the upper Upper: PVC | Lining: Textile - Polyester - Synthetical-fur |
Outsole: Injected - PVC | Anti-perforation insert: None | Weight:

1100 g per shoes

 \oplus Drawstring to ensure watertightness

GARDEN OB SRA

Lightweight work clogs suitable for the agricultural sector Upper: PVC | Lining: Textile - Polyester | Outsole: Injected - PVC Anti-perforation insert : None | Lacing system : None | Weight : 369 g per shoes

⊕ Lightweight product to reduce fatigue throughout the day

Green-Beige 36 → 47

GROUNDHC OB SRA

Comfortable, lightweight work boot for all types of low risk work Upper: PVC | Lining: Polyester | Outsole: Injected - PVC | Anti-perforation insert: None | Weight: 810 g per shoes

① Lightweight product to reduce fatigue throughout the day

Green-Beige 36 → 47

GROUNDMC OB SRA

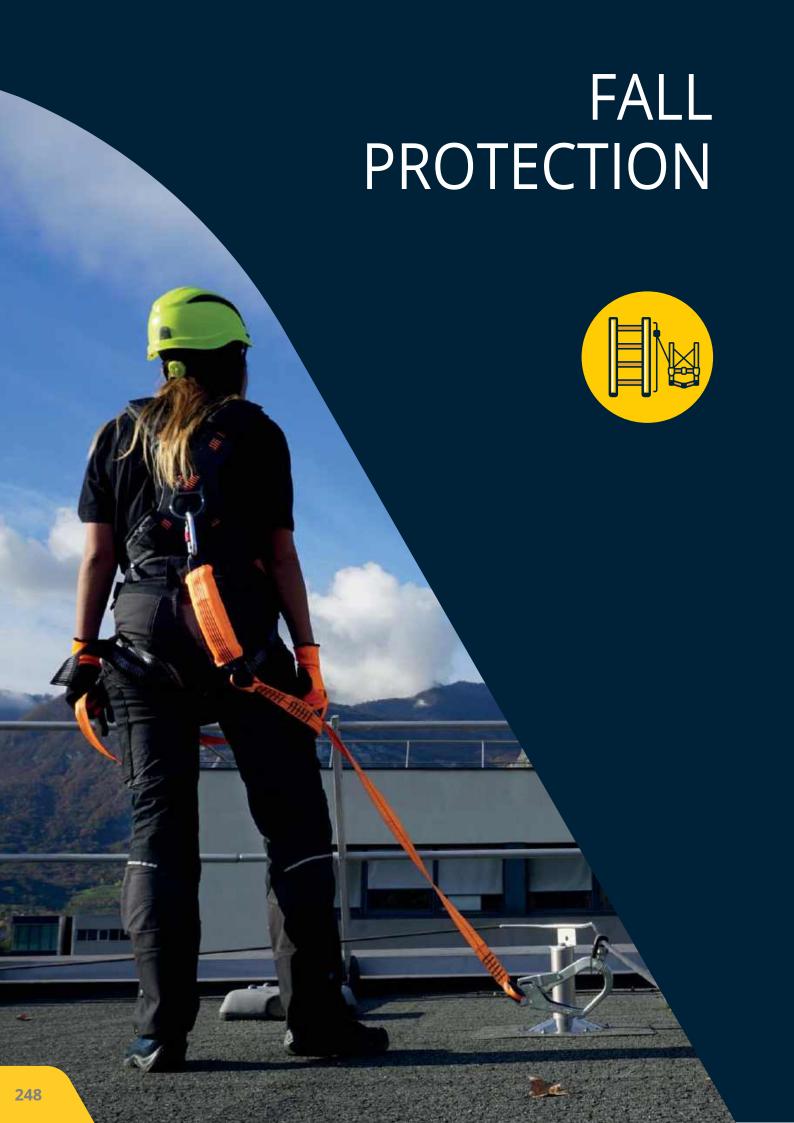
Comfortable, lightweight work half-boot for all types of low risk work

Upper : PVC | Lining : Textile - Polyester | Outsole : Injected - PVC | Anti-perforation insert : None | Weight : 620 g per shoes

① Lightweight product to reduce fatigue throughout the day

Khaki-Beige 35 → 49

AEROGREEN 04 CI FO SR


EN ISO 20347 04 CI FO A E

Comfortable, lightweight work boot with wide studs for all types of outdoor work

Upper: PU | Lining: Polyester | Insole: PU - Textile | Outsole: Spray injection - PU | Anti-perforation insert: None | Weight: 650 g per shoes

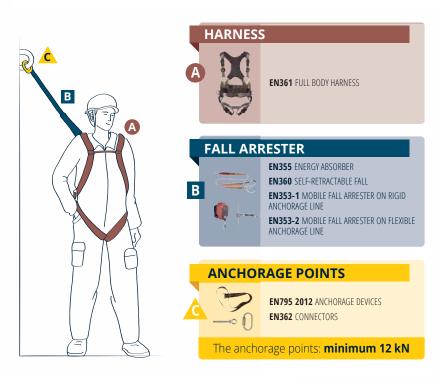
 \oplus Lightweight product to reduce fatigue throughout the day

Body support

Rescue and evacuation

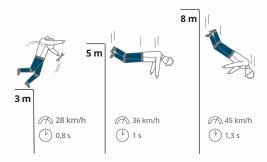
Fall arrester and suspension harnesses Fall arrester harnesses	254 256
Anchorage - Work positioning	
Fall arrester accessories Work positioning systems Anchorage devices Lanyards	260 262 282 286
Fall arrester systems	
Kits Energy absorbing lanyards Retractable fall arresters Fall arresters on rope Fall arresters on cable Accessories and storage bags	263 266 270 277 281 297
Connecting systems	
Connectors	288
Suspension	
Rope access work	290
Rescue	
Fall arrest and rescue, confined space	293

enjoy safety.

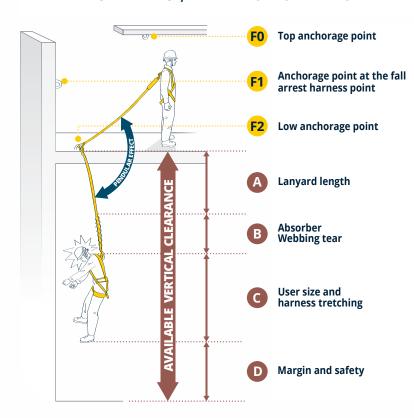

296

THE FALL ARREST SYSTEM

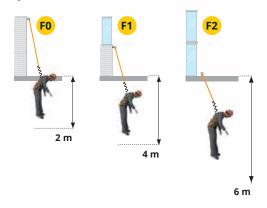
COMPOSITION


An individual anti-fall system is comprised of at least three elements.

Limit the impact to the user


6kN: Maximum tolerance threshold for human body

10kN: Irreversible lesions, death


THE 3 KEY CONCEPTS

▶ THE PENDULAR EFFECT, THE VERTICAL CLEARANCE AND THE FALL FACTOR

In order to stop the fall:

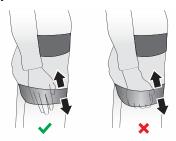
It is necessary to consider the space between the feet of user and the first encuntered obstacle (called Vertical Clearance) but also consider where should be anchored my fall arrest system (called Fall Factor).

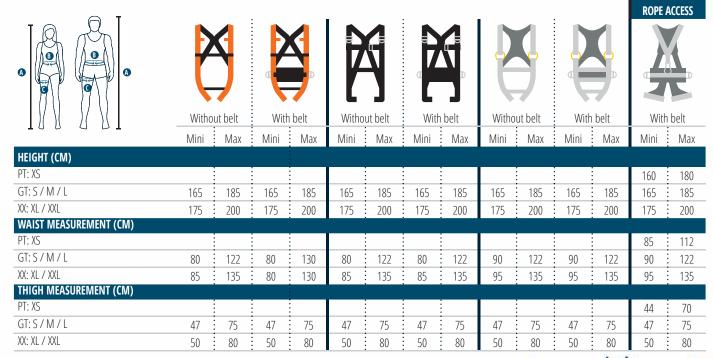
SAFETY INFO: WATCHING POINT

▶ THE DIFFERENT CONNECTION POINTS ON A HARNESS



HOW TO ADJUST YOUR HARNESS


BELT


D DORSAL

STRAP

ORDER THE RIGHT SIZE BY TAKING THE RIGHT MEASUREMENTS

ELARA KIT

SAFE, EASY, CLEAR, AFFORDABLE, INNOVATIVE

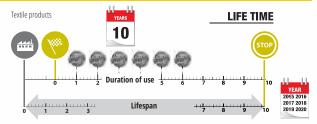
We are proud to present our innovative identity card

Using an Android or Apple mobile phone having technology, any user can scan the tag ((N)) and download our free APP from our Website.

USING APP ON YOUR SMARTPHONE

The 2 different applications:

- NFC User (Delta logo)
- NFC Check (harness logo)


After flashing NFC tag, user can read:

- Product information.
- The wearer's product name.
- The commissioning date of the PPE (which he will enter).

The Official Service Center (SAV) will write:

- The date of the annual inspection and will be able to consult the list of equipment
- Enter the elements of the visual inspection

LIFESPAN OF FALL ARREST PRODUCTS

EPI metaliques LIFE TIME 20 STOP 15 16 17 18 2065 2016 1 2 3 4 5 Lifespan 16 17 18 19 20

INSTRUCTIONS FOR PERIODIC INSPECTIONS SHALL INCLUDE:

- A recommendation for the frequency of periodic inspections, taking into
 account factors such as regulation, the type of equipment, frequency of use, and
 environmental conditions. This recommendation shall include a clause stating that
 the periodic inspection should be conducted at least once every twelve months;
- A warning to emphasise that periodic inspections should only be carried out by a competent person in strict compliance with the manufacturer periodic inspection procedures

VISUAL INSPECTION

Harnesses, belts, lanyards, ropes, energy absorbers, self-retractable devices that cannot be dismantled (e.g. AN102), connectors, our kit components (except ELARA270), temporary anchors (tripod, LV201 ...)

MECHANICAL INSPECTION

Self-retractable devices that can be dismantled, rescue equipment (e.g. TC013)

ANNUAL CHECK REMINDER SERVICE

After creating all your products on the APP, you will receive an email 15 days ebefore each compulsory annual control.

- A full access to a more complete PPE DATABASE is available on our website using the same login/password as on ID Card Application.
- ID Card App and Website databases are synchronized for using both tools together. It's up to you to use both or only one of them.

JAGUAR 2 HAR36R

EN358

EN361

EN813 150 kg

Technical harness with a new architecture designed to optimise the ergonomics of rope workers, equipped with a ventral blocker Composition of the main support : Aluminum - Polyester | Number of automatic loops: 2 | Number of non-removable buckles: 5 | Anti-fall point: 2 - Dorsal - Sternal | Holding point: 2 - Belt | Suspension point : 1 | 120° rotation | Weight : 2,7 kg

⊕ Certification above the maximum rated load of 100 kg: product certified at 150 kg

LYNX HAR35R

EN358

EN361

EN813

Technical harness with a new architecture designed to optimise the ergonomics of rope workers Composition of the main support : Aluminum - Polyester | Number of automatic loops : 2 | Number of non-removable buckles : 4 | Anti-fall point : 2 - Dorsal - Sternal | Holding point : 2 - Belt | Suspension point : 1 - Ventral | 120° rotation | Weight :

⊕ Certification above the maximum rated load of 100 kg: product certified at 150 kg

REVOLIN HAR35M

 $C \in$ EN361

EN358

High quality belt harness with comfort foams and automatic buckles for optimal fit and comfort Composition of the main support : Aluminum - Polyester | Number of automatic loops: 3 | Number of non-removable buckles: 2 | Anti-fall point: 2 - Dorsal - Sternal | Holding point: 2 - Belt | 120° rotation | Weight : 2 kg

⊕ Ergonomic design facilitating user movements

TIVANO HAR32M

EN361 150 kg

High quality harness with comfort foam and automatic buckles for optimal fit and comfort

Composition of the main support : Aluminum - Polyester Number of automatic loops: 3 | Number of non-removable buckles: 2 | Anti-fall point: 2 - Dorsal - Sternal | Holding point: 2 | Weight: 1,4 kg

⊕ Ergonomic design facilitating user movements

EN361 150 kg

EN358 150 kg

EN813 150 kg

PUMA HAR25

Harness designed for suspended rope work, it is the right compromise between comfort and price

Composition of the main support: Steel - Polyester | Manual loop | Anti-fall point: 2 - Dorsal - Sternal | Holding point: 2 - Belt | Suspension point: 1 - Ventral | Weight: 2,1 kg

⊕ Ergonomic design facilitating user movements

C E N361

EN358

HAR44EL

Insulating harness with positioning belt for electrical risks Composition of the main support: Steel - Plastic - Polyester | Manual loop | Anti-fall point: 2 - Dorsal - Sternal | Holding point: 2 - Belt | 180° rotation | Weight: 2 kg

 \oplus Thermoformed belt for optimal lumbar support and comfort

 $C \in$

EN361 100 kg

HAR42EL

Insulating harness for electrical risks Composition of the main support : Steel - Plastic - Polyester | Anti-fall point : 2 - Dorsal - Sternal | Weight : 0,922 kg

 \oplus Certification above the maximum rated load of 100 kg: product certified at 140 kg

Black

X-TREM LIGHT HAR22X

 ϵ

EN361 150 kg

The lightest innovative harness on the market with no metal parts Composition of the main support : Steel - Plastic - Polyester | Manual loop | Anti-fall point : 2 - Dorsal - Sternal | Weight : 0,580 kg

⊕ Ergonomic design facilitating user movements

Black

HAR25HA

EN358 150 kg

EN361 150 kg

Ergonomic harness with belt, with an extension strap for easy evacuation in confined spaces.

Composition of the main support : Steel - Polyester | Automatic loop | Number of automatic loops : 4 | Anti-fall point : 2 - Dorsal - Sternal | Holding point : 2 - Belt | Weight : 1,9 kg

 \oplus Extension tab for easy victim evacuation and rescue

Black

HAR24HA

C €

EN358 150 kg

Ergonomic harness with belt for maximum freedom of movement, 2 anchorage points and automatic buckles
Composition of the main support: Steel - Polyester | Automatic loop | Anti-fall point: 2 - Dorsal - Sternal | Holding point: 2 - Belt | Weight: 1,7 kg

 \oplus Specifically designed leg straps providing freedom of movement for long working days

Black

HAR24H

CE

EN358 150 kg

Ergonomic harness with positioning belt for maximum freedom of movement

Composition of the main support : Steel - Polyester \mid Manual loop \mid Anti-fall point : 2 - Dorsal - Sternal \mid Holding point : 2 - Belt \mid Weight : 1,7 kg

 \oplus Specifically designed leg straps providing freedom of movement for long working days

Black

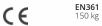
EN361 $C \in$

HAR23H

Ergonomic harness for maximum freedom of movement with 3 separate anchorage points

Composition of the main support : Steel - Polyester | Manual loop | Anti-fall point : 2 - Dorsal - Sternal | Weight : 1,4 kg

 \oplus Specifically designed leg straps providing freedom of movement for long working days



HAR22HA

Ergonomic harness for maximum freedom of movement, with 2 anchorage points and automatic buckles Composition of the main support : Steel - Polyester | Automatic loop | Anti-fall point : 2 - Dorsal - Sternal | Weight : 1,5 kg

 \oplus Specifically designed leg straps providing freedom of movement for long working days

HAR22H

Ergonomic harness for maximum freedom of movement with 2 anchorage points

Composition of the main support : Steel - Polyester | Manual loop | Anti-fall point : 2 - Dorsal - Sternal | Weight : 1,2 kg

 \oplus Specifically designed leg straps providing freedom of movement for long working days

EX220

Wide positioning belt for increased comfort when working at a height for long periods

Composition of the main support : Galvanized steel - Steel - Polyester | Holding point : 2 - Belt | 180° rotation | Adjustment loop | Weight: 0,712 kg

Black-Orange

⊕ Ergonomic design facilitating user movements

Orange

HAR14

EN358

Harness with two-coloured straps for intuitive fitting with positioning belt, for occasional wearers
Composition of the main support: Steel - Polyester | Manual loop
| Anti-fall point: 2 - Dorsal - Sternal | Holding point: 2 - Belt | 2

⊕ Two-tone strap for easy harness fitting

adjustable lateral plates | Weight : 1,1 kg

Fluorescent yellow

HAR12GILNO

 ϵ

EN361 140 kg

Harness with integrated black work waistcoat for safe working Composition of the main support: Steel - Polyester | Manual loop | Anti-fall point: 2 - Dorsal - Sternal | Adjustable size by zip | Weight: 1,1 kg

 \oplus Two-tone strap for easy harness fitting

HARVESGI

High visibility vest adaptable to all harnesses (except rope work), signalling workers at height Composition of the main support : 80% polyester - 20% cotton |

Compatibility: Compatible with all kind of harnesses

⊕ Compatible with all kind of harnesses

EN361 $C \in$

HAR12

Harness with 2 anchorage points and two-coloured straps for

intuitive fitting, for occasional wearers
Composition of the main support: Steel - Polyester | Manual loop
- Steel | Anti-fall point: 2 - Dorsal - Sternal | 2 adjustable lateral
plates | Weight: 0,730 kg

⊕ Two-tone strap for easy harness fitting

EN361 ϵ

HAR11

Harness with 1 anchorage point and two-tone straps for intuitive fitting, for occasional wearers

Composition of the main support : Steel - Polyester | Manual loop | Anti-fall point : 1 - Dorsal | 2 adjustable lateral plates | Weight : 0,640 kg

⊕ Two-tone strap for easy harness fitting

EN358 140 kg $C \in$

EX120

Black-Orange

2-point positioning belt, limiting stress on the hips and providing increased comfort

Composition of the main support : Galvanized steel - Steel - Polyester | Holding point : 2 - Belt | Adjustment loop | Weight : 0,400 kg

 \oplus Thermoformed belt for optimal lumbar support and comfort

HA203FS

Ultra-compact anti-compression strap kit in a reusable textile case to limit femoral compression in the event of a fall Composition of the main support : Glass-fibre | Carrying case | Included elements : Carrying case | Weight : 0,062 kg

 \oplus Helps maintain normal blood circulation after a fall

HAPAD2

Back comfort pad for harnesses, ensuring excellent breathability and long-lasting use

Composition of the main support : Polyester | Weight : 0,090 kg

Tool holder with extendable strap for optimal storage of various

Composition of the main support: Glass-fibre | Weight: 0,060 kg

Black-Orange

FN354

0.5 metre extension strap for easy extraction of a victim Composition of the main support : Steel - Polyester | Loop with shrinkage | Length : 0,5 m | Weight : 0,300 kg

Black

HA204

Ultra compact 1.1 metre retractable tool holder with a capacity of

Composition of the main support : Elastomer | Weight : 0,25 kg

HA205

Compact and comfortable wristband tool holder Composition of the main support : Polyester | Adjustable with Velcro | Weight : 0,05 kg

HA206

Tool holder with ultra-compact 0.52 metre extendable cable and a

capacity of 0.9 kg Composition of the main support : Elastomer | Compatibility : Can be used with HA205 | Weight : 0,90 kg

⊕ Can be used with HA205

HA207

Tool holder with ultra-compact 1.35 metre extendable cable and a

capacity of 2.2 kg
Composition of the main support : Elastomer | Double carabiners
(non PPE) | Included elements : Double carabiners (non PPE) | Weight: 0,05 kg

x 20

HA208

Comfortable design choker to keep you warm when working

Composition of the main support : Polyester | Weight : 0,031 kg

White

EX030400

EN358

4 metre positioning lanyard, allowing for smooth and optimal adjustment, with optional locking system
Composition of the main support : Glass-fibre | Length : 4 m | Weight: 1,2 kg

White

EX030200

EN358

2 metre positioning lanyard, allowing for smooth and optimal adjustment, with optional locking system

Composition of the main support: Glass-fibre | Type of opening:

Non-opening | Length: 2 m

Orange

EX118

EN358

Robust and efficient positioning lanyard with a protective sheath for intensive use and a longer service life Composition of the main support : Polyester | Length : 4 m

White

EX021

EN358

Positioning lanyard for simple and effective adjustment, suitable

Composition of the main support : Glass-fibre | Adjustable by means of a reducing loop on the rope | Length: 2 m | Weight: 0,306 kg

EN361 150 kg

EN360

x 5

ELARA380HPF

Specific fall arrest kit for nacelles in a ready-to-use bag This kit contains: 1x HAR22HA, 1x MICROBLOC AN106PF

 \oplus Specifically designed leg straps providing freedom of movement for long working days

C E N361

140 kg

EN355

EN 362

ELARA390HV2

ELARA340HV2

Comfort fall arrest kit with ergonomic harness and elastic energy-absorbing lanyard for greater flexibility This kit contains: $1 \times AM002$, $1 \times HAR22H$, $1 \times AN235200AD$, $1 \times HA200$

 \oplus Ready-to-use economic kit

 ϵ

EN361 EN Horizontal certification

150 kg **EN 795** Type B EN360

EN 362

Comfort fall arrest kit with ergonomic harness and self-retractable fall arrester

This kit contains: 1x AM002, 1x AN13006C2, 1x HAR23H, 1x HA200, 1x HAPAD2, 1x LV102100

Black S/M/L → XL/XXL

 \oplus Ready-to-use economic kit

 ϵ

EN353-2

EN358

EN361 150 kg

EN 362 EN 795 Type B

x3

ELARA350H

Black S/M/L → XL/XXL

Fall arrest kit for roofing work

This kit contains: 1x HAR24H, 1x ASCORD AN065, 1x AN30010, 1x EX021, 1x LV102100, 1x HA200, 2x AM002

⊕ Ready-to-use economic kit

ELARA320V2

 $C \in$ EN358

EN355

EN361 140 kg

Fall arrest kit with two-tone webbing harness and positioning belt for all applications of positioning and climbing on towers This kit contains: 1x HAR14, 1x EX021, 1x AM002, 1x AN213200ZDD

EN 362

⊕ Ready-to-use economic kit

Orange S/M/L

ELARA280V2

 $C \in$

EN355

EN361

EN 362

Fall arrest kit with double energy absorbing lanyard for work on scaffolding

This kit contains: 1x HAR12, 1x AN213200ZDD, 1x AM002

⊕ Ready-to-use economic kit

Orange S/M/L

ELARA270

EN354

EN360

EN 362

EN361 140 kg **EN 795** Type B

Specific fall-arrest kit for vertical work, with self-retracting fall arrester, lanyard and anchor point This kit contains: 1x HAR12, 1x PROTECTOR ROUND AN12010T, 1x

LO030200, 2x AM002

 \oplus Ready-to-use economic kit

ELARA140

EN360

EN361

EN 362

Fall arrest kit with two-coloured webbing harness and selfretractable webbing fall arrester for short distances
This kit contains: 1x HAR12, 1x MINIBLOC AN102, 1x AM002

C E N353-2

EN361 EN 362

x 5

ELARA170

Specific fall arrest kit for roofing work
This kit contains: 1x FENNEC AN06320, 1x HAR12, 2x AM002

C € EN353-2

EN361 140 kg

EN 362

x 5

ELARA150

Specific fall arrest kit for roofing work This kit contains: 1x FENNEC AN06310, 1x HAR12, 2x AM002

Orange S/M/L

C€ EN355

EN361 EN 362

x 5

First level fall arrest kit for scaffolders This kit contains: 1x HAR12, 1x AN203200ZD

C € EN355

EN361 EN 362

x 5

ELARA160V2

ELARA190V2

Fall arrest kit suitable for small budgets with its two-coloured harness straps in its carry bag This kit contains: 1x AM002

C€ EN354

EN 362

EN361 140 kg **EN 795** Type B x 5

ELARA130V2

Restraint kit in carry bag, suitable for all budgets This kit contains: 2x AM002, 1x L0030150, 1x HAR11

Orange S/M/L → XL/XXL

Black-Red

AN245200PRR

EN355

Double lanyard with dielectric energy absorber made of elastic webbing, allowing protection against electrical risks Composition of the main support : Plastic - Polyester | 2 sewn thimble loops | Minimum lanyard size : 1,4 m | Maximum lanyard size: 2 m | Weight: 1,9 kg

⊕ Certification above the maximum rated load of 100 kg: product certified at 140 kg

Black-Red

AN235200PR

EN355

Lanyard with dielectric energy absorber made of elastic webbing, allowing protection against electrical risks Composition of the main support : Plastic - Polyester | 2 sewn thimble loops | Minimum lanyard size : 1,4 m | Maximum lanyard size: 2 m | Weight: 1,2 kg

① Certification above the maximum rated load of 100 kg: product certified at 140 kg

Black-Orange

AN245200ADD

EN355 Horizontal certification RFU 11.062 140 kg

Double energy absorbing lanyard made of lightweight elastic webbing, providing freedom of movement Composition of the main support : Steel - Polyester | 2 thimble ferrule loops | Minimum lanyard size : 1,4 m | Maximum lanyard size : 2 m | Weight : 1,67 kg

 \oplus Elastic strap lanyard for easy movement and safety

Black-Orange

AN235200AD

EN355 Horizontal certification RFU 11.062 140 kg

Energy absorbing lanyard made of lightweight elastic webbing, providing freedom of movement Composition of the main support : Steel - Polyester | 2 sewn thimble loops | Minimum lanyard size : 1,4 m | Maximum lanyard size: 2 m | Weight: 1,07 kg

⊕ Automatic carabiners for secure and time-saving locking

 $C \in$

EN355 Horizontal certification RFU 11.062 140 kg

SPIRAL AN218S200ADD

Compact, 2-metre double energy-absorbing lanyard with patented system, guaranteeing great freedom of movement for short distances

Composition of the main support : Steel - Glass-fibre - Polyester | 2 sewn thimble loops | Maximum lanyard size: 2 m | Length: 2 m | Weight : 1,97 kg

⊕ Thermo-retractable tube to extend the life of lanyards

 $C \in$

EN355 Horizontal certification RFU 11.062 140 kg

SPIRAL AN208S200AD

White-Black

White-Black

Compact, energy-absorbing lanyard with patented system guaranteeing freedom of movement for short distances Composition of the main support : Steel - Glass-fibre - Polyester | 2 sewn thimble loops | Maximum lanyard size : 2 m | Length : 2 m | Weight: 1,27 kg

⊕ Thermo-retractable tube to extend the life of lanyards

 $C \in$

EN355 Horizontal certification RFU 11.062 140 kg

AN218R2ADD

White-Black

Energy absorbing lanyard with adjustable length allowing the length to be adjusted and therefore reducing the air draft, if

Composition of the main support : Steel - Glass-fibre - Polyester | 1 loop sewn thimble | Adjustable by means of a reducing loop on the rope | Minimum lanyard size : 1,5 m | Maximum lanyard size : 2 m | Weight: 1,97 kg

 \oplus Certification above the maximum rated load of 100 kg: product certified at 140 kg

 $C \in$

EN355 Horizontal certification RFU 11.062 140 kg

AN208R2AD

White-Black

Adjustable energy absorbing lanyard allowing the length of the lanyard to be adjusted and therefore reducing the air draft, if necessary

Composition of the main support : Galvanized steel - Polyester | 1 loop sewn thimble | Adjustable by means of a reducing loop on the rope | Minimum lanyard size : 1,5 m | Maximum lanyard size : 2 m | Weight: 1,27 kg

⊕ Certification above the maximum rated load of 100 kg: product certified at 140 kg

Energy absorbing lanyards

Orange

AN203200ZZ

EN355 Horizontal certification RFU 11.062 140 kg

Energy absorbing lanyard made of high impact webbing, for short

Composition of the main support : Polyester | 2 sewn thimble loops | Length : 2 m | Weight : 0,668 kg

⊕ Strap with improved abrasion resistance and certified for use on sharp edges

Orange

AN203100ZZ

EN355 Horizontal certification RFU 11.062 140 kg

Compact energy absorbing lanyard made of high impact webbing to reduce the user's draught

Composition of the main support : Polyester | 2 sewn thimble loops | Maximum lanyard size : 1 m | Length : 1 m | Weight : 0,600 kg

 \oplus Strap with improved abrasion resistance and certified for use on sharp edges

Orange

AN203200ZD

EN355 Horizontal certification RFU 11.062 140 kg

Energy absorbing lanyard made of high impact webbing, for short

Composition of the main support : Polyester | Gate opening (mm): 55 | 2 sewn thimble loops | Length: 2 m | Weight: 1 kg

① Strap with improved abrasion resistance and certified for use on sharp edges

Orange

AN213200ZZZ

EN355 Horizontal certification RFU 11.062 140 kg

Double energy absorbing lanyard, made of high-impact webbing, for short distances

Composition of the main support : Steel - Polyester | 2 sewn thimble loops | Maximum lanyard size : 2 m | Length : 2 m | Weight: 0,668 kg

⊕ Strap with improved abrasion resistance and certified for use on sharp edges

 $C \in$

EN355 Horizontal certification RFU 11.062 140 kg

AN213200ZDD

Double energy absorbing lanyard, made of high impact webbing,

with 2 wide opening hooks, for short distances
Composition of the main support: Steel - Polyester | 2 sewn
thimble loops | Maximum lanyard size: 2 m | Length: 2 m |
Weight: 1,6 kg

Orange

Orange

Orange

 \oplus Strap with improved abrasion resistance and certified for use on sharp edges

EN355 Horizontal certification RFU 11.062 140 kg

AN213150ZDD

Double energy-absorbing lanyard in high-strength webbing for short movements.

Composition of the main support : Steel - Polyester \mid 2 sewn thimble loops \mid Maximum lanyard size : 1,5 m \mid Length : 1,5 m \mid Weight : 1,4 kg

 \oplus Strap with improved abrasion resistance and certified for use on sharp edges

EN355 Horizontal certification RFU 11.062 140 kg

AN213100ZDD

Double energy absorbing lanyard, made of high-impact webbing, for short distances

Composition of the main support : Steel - Polyester | 2 sewn thimble loops | Maximum lanyard size : 1 m | Length : 1 m | Weight : 1,3 kg

 $\ensuremath{\oplus}$ Strap with improved abrasion resistance and certified for use on sharp edges

Orange

MINIBLOC AN102

EN360 RFU 11.062 150 kg

Lightweight and compact webbing retractor for short distances Composition of the main support : Plastic - Polyester \mid Included energy absorber | Included elements : Included energy absorber | Weight : 1,1 kg

Black

MICROBLOC AN106

EN360 RFU 10.060 Horizontal certification RFU 11.062 140 kg

Self-retractable webbing fall arrester for vertical and horizontal use on platforms, for short distances Composition of the main support : Glass-fibre - Polyester | Included energy absorber | Included elements : Included energy absorber | Weight: 1,46 kg

⊕ Double swivel for optimum user tracking

Black

MICROBLOC AN106PF

EN360 RFU 10.060 Horizontal certification RFU 11.062 140 kg

Self-retractable webbing fall arrester for vertical and horizontal use on platforms, for short distances Composition of the main support : Glass-fibre - Polyester | Included energy absorber | Included elements : Included energy absorber | Weight: 1,26 kg

 \oplus Double swivel for optimum user tracking

ANCOV

Protection for self-retracting hose reels

① Protects your reels from the weather and dust

 ϵ

EN360 RFU 11.062 150 kg

MAXIBLOC AN10006T

Lightweight and compact self-retractable cable fall arrester for easy installation and use for distances of up to 6 metres Composition of the main support: ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements: Included energy absorber | Weight: 2,8 kg

 \oplus Certification above the maximum rated load of 100 kg: product certified at 150 kg

Black

 ϵ

EN360 RFU 11.062 150 kg

MAXIBLOC AN10010T2

Lightweight and compact self-retractable cable fall arrester for easy installation and use for distances of up to 10 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel \mid Weight : 3,75 kg

 \oplus Certification above the maximum rated load of 100 kg: product certified at 150 kg

Black

 ϵ

EN360 RFU 11.062 150 kg

MAXIBLOC AN10015T

Lightweight and compact self-retractable cable fall arrester for easy installation and use for distances of up to 15 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel \mid Weight : 4,5 kg

 \oplus Certification above the maximum rated load of 100 kg: product certified at 150 kg

Black

 $C \in$

EN360 RFU 10.060 Horizontal certification RFU 11.062 128 kg

MEDBLOC AN13006C2

Self-retractable webbing fall arrester for vertical and horizontal use, for distances of up to 6 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Polyester | Weight : 1,6 kg

 \oplus Visual fall indicator for instant verification that the product is working properly

Black

PROTECTOR TETRA AN14008T

EN360 RFU 10.060 Horizontal certification

Self-retractable webbing fall arrester for vertical and horizontal use, for distances of up to 8 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Polyester | Included energy absorber | Included elements : Included energy absorber | Weight : 5,4 kg

⊕ Impact-resistant ABS housing

PROTECTOR TETRA AN14008F

elements: Included energy absorber | Weight: 5,4 kg

EN360 RFU 10.060 Horizontal certification

Self-retractable webbing fall arrester for vertical and horizontal use, for distances of up to 8 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Polyester | Included energy absorber | Included

⊕ Impact-resistant ABS housing

PROTECTOR TETRA AN14006T

EN360 RFU 10.060 Horizontal certification

Self-retractable webbing fall arrester for vertical and horizontal use, for distances of up to 6 metres Composition of the main support: ABS (Acrylonitrile Butadiene Styrene) - Polyester | Included energy absorber | Included elements : Included energy absorber | Weight : 5,4 kg

⊕ Impact-resistant ABS housing

PROTECTOR TETRA AN14006F

EN360 RFU 10.060 Horizontal certification

Self-retractable webbing fall arrester for vertical and horizontal use, for distances of up to 6 metres

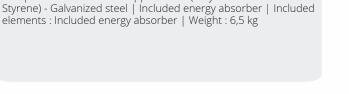
Composition of the main support: ABS (Acrylonitrile Butadiene Styrene) - Polyester | Included energy absorber | Included elements : Included energy absorber | Weight : 5,4 kg

⊕ Impact-resistant ABS housing

EN360 $C \in$ RFU 11.062 150 kg

PROTECTOR TETRA AN15015T

Self-retractable cable fall arrester for distances of up to 15 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements: Included energy absorber | Weight: 6,5 kg



EN360 CE

PROTECTOR TETRA AN15015F

Self-retractable cable fall arrester for distances of up to 15 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included

 $C \in$

EN360 RFU 11.062 150 kg

PROTECTOR TETRA AN15010T

Self-retractable cable fall arrester for distances of up to 10 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements: Included energy absorber | Weight: 5,3 kg

⊕ Impact-resistant ABS housing

CE

RFU 11.062 150 kg

PROTECTOR TETRA AN15010F

Self-retractable cable fall arrester for distances of up to 10 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements : Included energy absorber | Weight : 5,8 kg

⊕ Impact-resistant ABS housing

PROTECTOR TETRA AN15006T

EN360 RFU 11.062 150 kg

Self-retractable cable fall arrester for distances of up to 6 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements : Included energy absorber | Weight : 5,6 kg

⊕ Impact-resistant ABS housing

PROTECTOR TETRA AN15006F

 ϵ

EN360 RFU 11.062 150 kg

Self-retractable cable fall arrester for distances of up to 6 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements : Included energy absorber | Weight : 5,6 kg

⊕ Impact-resistant ABS housing

PROTECTOR LARGE AN18030T

CE

EN360 RFU 11.062 150 kg

Self-retractable cable fall arrester with carrying handle for easy transport and installation, for lengths of 30 metres Composition of the main support: ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements: Included energy absorber | Weight: 12,35 kg

 \oplus Double swivel for optimum user tracking

PROTECTOR LARGE AN18020T

RFU 11.062 150 kg

Self-retractable cable fall arrester with carrying handle for easy transport and installation, for lengths of 20 metres Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Included energy absorber | Included elements : Included energy absorber | Weight : 11,5 kg

⊕ Double swivel for optimum user tracking

((

EN360

PROTECTOR EXTRA LARGE AN19060T2

Self-retractable fall arrester in stainless steel cable reel for long distances up to 60 metres.

Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Steel | Included energy absorber | Included elements : Included energy absorber | Weight : 30,5 kg

⊕ IP66: high protection against dust and water splashes

 ϵ

EN360

PROTECTOR EXTRA LARGE AN19040T2

Self-retractable fall arrester in stainless steel cable for long distances of up to 40 metres

Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Steel | Included energy absorber | Included elements : Included energy absorber | Weight : 21,1 kg

⊕ IP66: high protection against dust and water splashes

C€ EN1496

150 kg

EN360 RFU 11.062 150 kg

> **EN360** RFU 11.062 150 kg

PROTECTOR ELEVATOR TR01830U

30 metre self retractable fall arrester with rescue option for victim recovery

Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Stainless steel | Included energy absorber | Included elements : Included energy absorber | Weight : 14,5 kg

 \oplus Double swivel design for optimum user tracking and improved rewinding of the strap in the housing

CE

EN1496 Class A 150 kg

PROTECTOR ELEVATOR TR01820U

20 metre self retractable fall arrester with rescue option for victim recovery

Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Stainless steel | Included energy absorber | Length : 20m m | Included elements : Included energy absorber | Weight : 13,9 kg

⊕ Double swivel for optimum user tracking

PROTECTOR LOAD AN517

2006/42/EEC

Load fall arrester for securing a load of 250 kg with a cable course

of 10 metres
Composition of the main support: ABS (Acrylonitrile Butadiene
Styrene) - Galvanized steel | Safe working load: 250 | Weight: 5,1 kg

⊕ Impact-resistant ABS housing

PROTECTOR LOAD AN518

2006/42/EEC

Load fall arrester for securing a load of 250 kg with a cable course of 15 metres

Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Galvanized steel | Safe working load : 250 | Weight : 5,9

⊕ Impact-resistant ABS housing

CE

EN353-2

ASDRISS2 AN068

Compact, lightweight, sliding fall arrest system on braided rope

with descent speed for rope workers Composition of the main support : Aluminum | End spliced with thimble loop | Included energy absorber | Type of opening : Opening | Included elements : Included energy absorber | Weight: 0,548 kg

⊕ Sliding opening for easy positioning on the rope support

 $C \in$ EN 12841

Type A Type B

EN353-2

CAMELEON AN066A

Sliding fall arrest system with energy absorber that facilitates the user's movements

Composition of the main support : Steel - Stainless steel - Polyester - Polyethylene | Weight : 0,706 kg

⊕ NFC system guarantees traceability

 $C \in$ EN 12841 EN353-2

CAMELEON AN066

Lightweight, compact, sliding fall arrest system for 10.5 mm braided ropes, can also be used as a rope clamp Composition of the main support : Steel - Plastic | Weight : 0,300

 \oplus NFC system guarantees traceability

Fall arresters on rope

White

AN410

 $C \in$ EN 12841 EN353-2

10 metre anchorage line in 10.5 mm braided rope for use with the AN068 and AN066 sliding fall arrest systems for long distances

Composition of the main support : Steel - Glass-fibre -Caoutchouc | 1 loop sewn thimble | AN066 counterweight | Included elements: AN066 counterweight | Weight: 1,4 kg

⊕ Harnesses and textiles can be washed with neutral soap

White

AN420

EN353-2

EN 12841

20 metre anchorage line in 10.5 mm braided rope for use with the AN068 and AN066 sliding fall arrest systems for long

Composition of the main support : Steel - Glass-fibre -Caoutchouc | 1 loop sewn thimble | AN066 counterweight | Included elements: AN066 counterweight | Weight: 2,1 kg

⊕ NFC system guarantees traceability

White

AN430

 $C \in$ EN 12841

 $C \in$

EN 12841

EN353-2

30 metre anchorage line in 10.5 mm braided rope for use with the AN068 and AN066 sliding fall arrest systems for long distances Composition of the main support : Steel - Glass-fibre -

Caoutchouc | 1 loop sewn thimble | AN066 counterweight | Included elements: AN066 counterweight | Weight: 2,9 kg

① Harnesses and textiles can be washed with neutral soap

White

AN401

EN353-2

10.5 mm braided rope anchorage line sold by the metre for use with the AN068 and AN066 sliding fall arrest systems for long distances

Composition of the main support : Glass-fibre

Harnesses and textiles can be washed with neutral soap

C€ EN353-2

ASCORD AN065

Lightweight and compact sliding fall arrest system for use on 14 mm stranded ropes

Composition of the main support : Stainless steel | Type of opening : Opening | Weight : 0,764 kg

 \oplus Visual fall indicator for instant verification that the product is working properly

C E N353-2

AN30010

10 metre anchorage line made from 14 mm stranded rope for use with the AN065 sliding fall arrest system for long distances Composition of the main support : Glass-fibre \mid End spliced with thimble loop \mid Weight : 1,6 kg

White

White

White

C € EN353-2

AN30020

20 metre anchorage line made from 14 mm stranded rope for use with the AN065 sliding fall arrest system for long distances End spliced with thimble loop \mid Weight: 3 kg

C€ EN353-2

AN30030

30 metre anchorage line made from 14 mm stranded rope for use with the AN065 sliding fall arrest system for long distances Composition of the main support : Glass-fibre \mid End spliced with thimble loop \mid Weight : 4,1 kg

White-Black

FENNEC AN06310

EN353-2

Sliding fall arrest system already mounted on its rope which makes it easy to set it up for occasional users over a length of 10

Composition of the main support : Steel - Stainless steel -Glass-fibre | 1 loop spliced on high end | Wear indicator | Type of opening : Non-opening | Included elements : Wear indicator Weight: 1,3 kg

⊕ NFC system guarantees traceability

FENNEC AN06320

 $C \in$

EN353-2

Sliding fall arrest system already mounted on its rope which makes it easy to set it up for occasional users over a length of 20

Composition of the main support: Steel - Stainless steel -Glass-fibre | 1 loop spliced on high end | Wear indicator | Type of opening: Non-opening | Included elements: Wear indicator Weight: 2,3 kg

⊕ NFC system guarantees traceability

White-Black

FENNEC AN06330

EN353-2

Sliding fall arrest system already mounted on its rope which makes it easy to set it up for occasional users over a length of 30

Composition of the main support : Steel - Stainless steel - Glass-fibre | 1 loop spliced on high end | Wear indicator | Type of opening: Non-opening | Included elements: Wear indicator | Weight: 3,4 kg

 \oplus NFC system guarantees traceability

 ϵ

EN353-1

ASCAB AN071

Sliding fall arrest system for movement on 8 mm cable Composition of the main support : Steel - Stainless steel | Type of opening : Opening | Weight : 0,900 kg

Steel

Grey-Red

ASCAB AN025

Cable per linear metre for vertical lifeline Composition of the main support : Stainless steel | Weight : 0,25 kg

x 1

ASCAB AN024

Manufactured cable end Composition of the main support : Steel - Stainless steel | 1 thimble sleeve loop | Weight : 0,25 kg

Steel

EN 795 Type A

AN801

Adaptable attachment kit for ladder lifeline Composition of the main support : Stainless steel | Universal anchorage | Included elements : Universal anchorage | Weight : 4,2 kg

Steel

x 12

AN802

Intermediate lifeline feedthrough for better cable orientation Composition of the main support : Stainless steel | Recommended at least every 8 m | Universal anchorage | Included elements : Universal anchorage | Weight : 1,3 kg

Steel

Anchorage devices

1.5 metre extension strap for easy extraction of a victim Composition of the main support : Steel - Polyester | Loop with

1 metre extension strap for easy extraction of a victim Composition of the main support : Steel - Polyester | Loop with

shrinkage | Length : 1 m | Weight : 0,222 kg

shrinkage | Length : 1,5 m | Weight : 0,277 kg

LV102150

EN354

EN 795 Type B

Black-Orange

LV102100

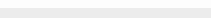
 ϵ

EN354

EN 795 Type B

Black-Orange

LO030200


C € EN 795

Type B

EN354

- Kananananan

0.5 metre extension strap for easy extraction of a victim Composition of the main support : Steel - Polyester | Loop with shrinkage | Length : 0,5 m | Weight : 0,300 kg

CE

EN 795

EN354

2 metre webbing lanyard and anchorage point, allowing maximum versatility

Composition of the main support : Polyester | 2 sewn loops | Length : 2 m | Weight : 0,218 kg

Black-Orange

Black-Orange

LO030150

C € EN 795

EN354

1.5 metre webbing lanyard and anchorage point, allowing maximum versatility

Composition of the main support : Polyester \mid 2 sewn loops \mid Length : 1,5 m \mid Weight : 0,187 kg

Black-Orange

LO030100

(€ EN 795

EN354

1 metre webbing lanyard and anchorage point, allowing maximum versatility

Composition of the main support : Polyester \mid 2 sewn loops \mid Length : 1 m \mid Weight : 0,070 kg

EN 795 Type A

LV106

Swivel anchor for vertical or horizontal installation Composition of the main support : Stainless steel | Weight : 0,100 kg

 $C \in$

EN 795 Type A

LV105

Steel

Stainless steel anchorage rod for sealing to prevent corrosion Composition of the main support : Stainless steel | Length : 0,14 m | Weight : 0,174 kg

 $C \in$ TS16415 EN 795 Type B

DAYAK LV120G

Steel

Steel

Steel

Anchoring bar for doors to secure 2 people, easy to install Composition of the main support : Galvanized steel | For door frame or window from 63 to 123 cm | Weight: 5,99 kg

Easy to install, durable anchorage mounting plate

Composition of the main support : Stainless steel | Weight :

 $C \in$

EN 795 Type A

0,046 kg

LV100

 $C \in$

EN 795

IPN LV130

Temporary anchorage device for IPN structures with wheels that

allow the anchorage to be slid away Composition of the main support : Aluminum - Steel - Stainless steel - Polyester | For beams of width 76 to 255 mm | Weight : 4,251 kg

 $C \in$ EN 795

Type B

EN354

AM007

Steel sling covered with a protective sheath, designed for structures with sharp angles

Composition of the main support : Steel | 2 thimble ferrule loops | protective sheath | Length : 1 m | Included elements : protective sheath | Weight: 0,600 kg

Anchorage devices

LV400

Telescopic pole with 5 sections for remote securing from the ground (2 to 8 metres)

Composition of the main support : Glass Fiber | Weight : 5 kg

Steel

LV401

EN 362 Classe A

EN 795 Type B

Hook that fits on the LV400 pole allowing automatic locking Composition of the main support : Aluminum | Gate opening (mm) : 90 | Major axis strength (kN) : 23 | Type of opening : Double action opening | Weight : 1,100 kg

Red-Fluorescent yellow

Telescopic pole with three 1, 2 or 3 metre long sections Composition of the main support : Glass Fiber | Weight : 4 kg

Steel

LV402

Adapter for connector used with rescue poles Composition of the main support : Steel | Weight : 0,362 kg

EN 795Type B Type
C

SPEEDLINE LV201

2 to 20 metre long temporary webbing lifeline, allowing to secure 2 simultaneous users, very easy to install with tensioner Composition of the main support : Polyester \mid Length : 20 m \mid Weight : 3,8 kg

Steel

 ϵ

EN 795 Type B Type C

LV301

11 metre single-section cable lifeline, easy to install with tensioner Composition of the main support : Stainless steel \mid Length : 12 m \mid Weight : 6,4 kg

EN354 White 5x (E LO147150CDD 1.5 metre double lanyard with large opening connector, for maximum versatility and connection to any type of structure Composition of the main support : Glass-fibre | 1 loop sewn thimble | Length: 1,5 m | Weight: 1,4 kg EN354 White 15 x (**(** LO147150 1.5 metre double, braided rope lanyard with thimble loop ends for maximum versatility Composition of the main support : Glass-fibre | 2 sewn thimble loops | Length : 1,5 m | Weight : 0,264 kg White 5x (E EN354 LO047150AD 1.5 metre lanyard with large opening connector, for maximum versatility and connection to any type of structure Composition of the main support : Glass-fibre | 2 sewn thimble and loops | Length: 1,5 m | Weight: 0,802 kg White EN354 15 x (E LO045200 2 metre braided rope lanyard with thimble loop ends for maximum versatility Composition of the main support : Glass-fibre | 2 sewn thimble loops | Length: 2 m | Weight: 0,188 kg White EN354 15 x (**(** LO047150 1.5 metre braided rope lanyard with thimble loop ends for maximum versatility Composition of the main support : Glass-fibre | Length : 1,5 m | Weight: 0,150 kg EN354 White LO047100 1 metre braided rope lanyard with thimble loop ends for maximum versatility Composition of the main support : Glass-fibre | Length : 1 m | Weight: 0,116 kg

C€ EN354

x 15

LO007150CD

White

1.5 metre lanyard with large opening connector, for maximum versatility and connection to any type of structure Composition of the main support : Glass-fibre \mid 2 sewn thimble loops \mid Length : 1,5 m \mid Weight : 0,850 kg

C€ EN354

x 15

LO007150

Lanyard with thimble loop ends for maximum versatility Composition of the main support : Glass-fibre \mid 2 sewn thimble loops \mid Length : 1,5 m \mid Weight : 0,198 kg

C€ EN354

LO007100

1 metre lanyard with thimble loop ends for maximum versatility Composition of the main support : Glass-fibre \mid 2 sewn thimble loops \mid Length : 1 m \mid Weight : 0,154 kg

C€ EN354

LO005200

2 metre lanyard with thimble loop ends for maximum versatility Composition of the main support : Glass-fibre \mid 2 sewn thimble loops \mid Length : 2 m \mid Weight : 0,260 kg

AM023

Triple action 1/4 turn self-locking carabiner. Composition of the main support : Aluminum | Gate opening (mm) : 20 mm | Major axis strength (kN) : 22 kN | Weight : 0,088 kg **C**€ EN12275

EN 362 Classe E

Steel

AM025

Very light aluminium carabiner with automatic locking system for easy installation

Composition of the main support : Aluminum | Gate opening (mm) : 23 | Major axis strength (kN) : 25 | Weight : 0,180 kg

EN 362 Classe F

Steel

AM018

Automatic lock, quarter-turn karabiner for easy opening and reduced risk of mish andling $\,$

Composition of the main support : Steel | Gate opening (mm) : 19 | Major axis strength (kN) : 23 | Length : 0,108 m | Weight : 0,200 kg

20 x C €

EN 362 Classe E

Steel

AM002

Screw-in carabiner, pack of 5, to suit all budgets Composition of the main support : Steel \mid Gate opening (mm) : 18 \mid Major axis strength (kN) : 25 \mid Manual system : Screw \mid Length : 0,108 m \mid Weight : 0,802 kg

EN 362 Classe B

C€ EN12275

EN 362 Classe A Classe T

AM030

Very light aluminium hook to limit the weight to be carried by the user

Composition of the main support : Aluminum \mid Gate opening (mm) : 25 \mid Major axis strength (kN) : 33 \mid Length : 0,136 m \mid Weight : 0,132 kg

 ϵ

EN 362 Classe A Classe T

AM027

Wide opening karabiner with an eye hook for easy connection to another fall arrest system or anchorage Composition of the main support: Aluminum | Gate opening

Composition of the main support : Aluminum | Gate opening (mm): 58 | Major axis strength (kN): 23 | Eye hook opening with latch | Length: 0,239 m | Included elements: Eye hook opening with latch | Weight: 0,240 kg

Steel

Steel

 ϵ

EN 362 Classe A

AM022

Automatic lock karabiner that reduces the risk of mishandling and has a large opening for easy anchoring

Composition of the main support : Steel | Gate opening (mm) : 55 | Major axis strength (kN) : 25 | Length : 0,215 m | Weight : 1 kg

Steel

Steel

 $C \in$

AM009

Wide opening docking with an eye hook that facilitates anchoring on large structures

Composition of the main support : Steel | Gate opening (mm) : 100 | Major axis strength (kN) : 23 | Eye hook | Length : 0,50 m | Included elements : Eye hook | Weight : 0,285 kg

Orange

Suspension

TC001

EN567

Opening belly clamp for maximum versatility on 8 to 13 mm

Composition of the main support : Aluminum | Works on braided rope | Weight: 0,160 kg

Orange

TC002

EN567

Lightweight, easy-to-use right-hand ascender handle Composition of the main support : Aluminum | Works on braided rope - Right hand | Weight : 0,240 kg

Orange-Grey

TC003

EN567

Lightweight, easy-to-use left-hand ascender handle Composition of the main support : Aluminum | Works on braided rope - Left hand | Weight : 0,240 kg

Grey

TC012

Mono stirrup allowing the user to ascend on a rope Composition of the main support : Polyester | To pair with TC002 or TC003 | Feature : Mono stirrup | Weight : 0,200 kg

Black-Orange

SAFECORD TC007

EN341 Type 2 Class A

Self-locking descender on a multifunctional rope allowing controlled descent, owing to its anti-panic system Composition of the main support : Aluminum | For ascent and descent | Weight: 0,360 kg

Black

EN 12841 Type C

EN341 Class A

x 20

DESCORD TC006

Self-locking descender on a rope allowing controlled descent, owing to its anti-panic system

Composition of the main support : Aluminum | Works on braided rope | Feature : Double security | Weight : 0,360 kg

TC004

Mountain Eight for rope work techniques Composition of the main support : Aluminum | Works on braided rope | Weight : 0.130 kg

x 20

Dia

Safety figure of 8 Composition of the main support : Aluminum | Works on braided rope | Weight : 0,260 kg

TC005

Swinging flange pulley, for rope work Composition of the main support : Aluminum | Works on braided rope | Weight : 0.250 kg

CE 80 kN

TC015

Swinging double flange pulley, for rope work Composition of the main support : Aluminum | Works on braided rope | Weight : 0.430 kg

TC016

EN12278

Mini pulley for rope work Composition of the main support : Aluminum | Works on braided rope - Works on cable | Weight: 0.140 kg

TC025

EN12278

Double ball bearing pulley for easy rope travel like a zip line Composition of the main support : Aluminum | Works on braided rope - For zip lines - Works on cable | Weight : 0,280 kg

Black-Orange

TC040

EN354

Double ball-bearing swivel. Composition of the main support : Aluminum | Weight : 0,160 kg

White

TC009

EN1891 Type A

Versatile semi-static braided rope for all types of rope work Composition of the main support : Glass-fibre

Orange

Rope guard to prevent rope wear on sharp or roof edges Composition of the main support : Plastic \mid Length : 0,35 m \mid Weight: 0,200 kg

Black-Grey

Rope protection support for sharp edges Composition of the main support : Plastic - Polyester

C €EN 795

Type B

GIRAFE TRG20

Jib crane with folding arm for safety, easy to transport and install for all types of work at height or evacuation Composition of the main support : Galvanized steel | For confined space | Not included : TRA102 adjuster plate - Base | Weight : 25

x 1

TRG01

Swivel base on the ground for TRG20 Composition of the main support : Steel | Weight : 16 kg

x1

TRG02

Wall rotating base for mobile anchor TRG20 Composition of the main support : Steel | Weight : 19 kg

Steel

x 1

TRG03

Steel

Self-supporting base for TRG20 stem Composition of the main support : Steel \mid For confined space \mid Weight : 36 kg

Aluminium-coloured

TRA20

C€ TS16415

EN 795 Type B

Aluminium tripod up to 2 metres, lightweight and easy to install for all types of work in confined spaces
Composition of the main support: Aluminum | Wheelbase on ground: 1,89 | Not included: TRA102 adjuster plate - TRA103 step | Weight: 15,3 kg

Aluminium-coloured

TRA22

EN 795 Type B

Aluminium tripod up to 2 metres, with 2 support plates, light and easy to install for all types of work in confined spaces
Composition of the main support : Aluminum | Wheelbase on ground : 1,89 | Not included : TRA102 adjuster plate - TRA103 step | Weight : 17,4 kg

Aluminium-coloured

TRA30

EN 795 Type B

Aluminium tripod up to 3 metres, lightweight and easy to install for all types of work in confined spaces
Composition of the main support: Aluminum | Wheelbase on ground: 2,62 | Not included: TRA102 adjuster plate - TRA103 step | Weight: 15,30 kg

Aluminium-coloured

TRA32

1 x

C € TS16415

EN 795 Type B

Aluminium tripod up to 3 metres, with 2 support plates, light and easy to install for all types of work in confined spaces
Composition of the main support : Aluminum | Wheelbase on ground : 2,62 | Not included : TRA102 adjuster plate - TRA103 step | Weight : 22,2 kg

TRA102

Mounting plate for mounting the Protector Elevator or the winch on the tripod $\,$

Composition of the main support : Aluminum | For winch |

Feature: Tripod mount | Weight: 0,860 kg

TRA103

Steps fit over the tripod leg for easy access to the tripod head Composition of the main support : Stainless steel \mid Feature : Tripod mount \mid Weight : 0,500 kg

EN1496 Class A 150 kg

EN360 RFU 11.062 150 kg

PROTECTOR ELEVATOR TR01830U

30 metre self retractable fall arrester with rescue option for victim recovery

Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Stainless steel | Included energy absorber | Included elements : Included energy absorber | Weight : 14,5 kg

 \oplus Double swivel design for optimum user tracking and improved rewinding of the strap in the housing

(€

Class A 150 kg **EN360** RFU 11.062 150 kg

PROTECTOR ELEVATOR TR01820U

20 metre self retractable fall arrester with rescue option for victim recovery

Composition of the main support : ABS (Acrylonitrile Butadiene Styrene) - Stainless steel | Included energy absorber | Length : 20m m | Included elements : Included energy absorber | Weight : 13,9 kg

⊕ Double swivel for optimum user tracking

TC022

EN1498

Practical multi-size evacuation triangle to facilitate the evacuation

Composition of the main support: Polyester | 12 adjustment points | Compatibility : Fits all body types thanks to its 12 adjustment points | Weight : 1,1 kg

Black

TC104

Universal rescue stretcher Composition of the main support : Polyester - Polyethylene | adjustable universal sling | Feature : Foldable | Weight : 18,7 kg

Black-Red

TC105

A seat for a vertical movement

Composition of the main support : Polyester | For vertical movement | Adjustable lenght foot rest | Ring D tool holderon both sides | Included elements : Ring D tool holderon both sides | Weight : 2,2 kg

Black-Orange

RAH33

 $C \in$ EN1498 EN361

Head down harness for descending head down in confined

Anti-fall point : 2 - Dorsal - Sternal | Adjustment loop | With rescue sling | Included elements : With rescue sling | Weight : 2 kg

Black

RESCUEHUB TC065

EN341

EN1496 Class B 225 kg

Lightweight, compact rescue and evacuation system with magnetic brake system, certified for 2 people and a maximum load of 225 kg

Composition of the main support : Aluminum - Steel | For 2 people < 225 kg | Feature : Automatic braking system - Rescue equipment with hand wheel | Not included: TC066 rope sold separately | Weight : 3,2 kg

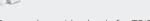
Black

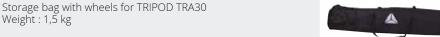
TC066

TC066 polyamide rope, flexible and easy to handle, sold by the

Composition of the main support : Glass-fibre | 2 sewn loops

EN1891 Туре А





Weight: 1,5 kg

TRBAG

Black

x 10

TRBAG3

Black

Storage bag for TRIPOD TRA30

Weight: 1,8 kg

x 5

TC008

Very practical PVC canvas bag for your fall arrest system Composition of the main support : Plastic \mid Volume : 42 + 10 L \mid Weight : 1 kg

Orange

x 20

RA005L

Tool bag, to be attached to the harness so that you do lose your tools

Composition of the main support : Plastic | Volume : 5,5 | | Compatibility : Connectable to a harness and tool holder | Weight : 0,194 kg

x 20

RA038

Very practical PVC canvas bag for your fall arrest system Composition of the main support : Plastic | Volume : 12,5 + 7,5 L | Weight: 0,512 kg

Orange

Technical information

Head protection	300
Hand protection	312
Body protection	317
Foot protection	322
Fall protection	324
Regulatory framework	327

enjoy safety.

Safety eyewear provides protection from spray and splatter from particles, liquids and dust, and chemical fumes and radiation.

HOW TO PROTECT YOURSELF?

Select the most suitable protective glasses or shields

- Identify the type of risk: sprays, radiation, other, ...
- **Determine the type of protection:** spectacles-type safety glasses, goggles, face mask, cover goggles, ...
- Note the protective features: scratch-resistant, fog-resistant, tinted, ...
- Select the type of eye-piece: one-piece or double lens
- Choose the frame type: design, classical, ...

STANDARDS

EN166: applies to all types of individual protection of the eye which protects from hazards likely to damage the eye, except for nuclear radiation, x-rays, laser emissions and infrared emitted by low-temperature sources. Does not apply to eye protection for which separate standards exist (anti-laser eye protection, sunglasses for general use,...).

EN175: Specifications for the safety requirements for eye and face protection equipment for welding and related techniques (filters frames/media).

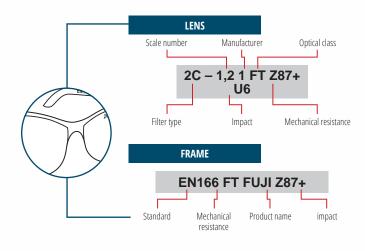
EN169: Specifications of level numbers and requirements relating to the transmittance of filters to protect operators for welding and related techniques. Specification of requirements for welding filters with double number of levels.

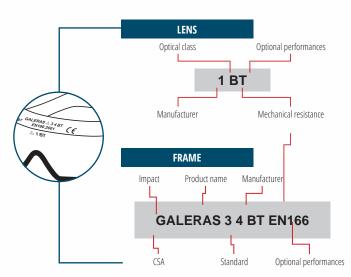
EN170: Specifications of level numbers and of requirements relating to the transmittance of the filters for protection against ultraviolet radiation.

EN172: Specification of level numbers and requirements relating to the transmittance of filters for protection against solar radiation, industrial use.

EN379: Specification of the requirements for automatic welding filters, i.e. welding screens with automatic variation of the transmission factor. These screens are intended to protect operators during welding and related techniques..

EN1731: Material specifications, design, performance and test methods for eye and face mesh type protective, for professional use.


ANSI (US American National Standards Institute) Z87.1: Specifications and minimum general requirements, test methods, selection, use and maintenance of eye and face protection.


GS-ET 29: Requirements, performances, test methods relating to face shields providing protection against electric arcing.

ASTM-F-2178-12: Standard test method for determining the arc flash index and standard specification for face protection products.

CSA Z94.3: This safety eyewear standard covers eye and face protectors for applications in Canada.

MARKING

• SYMBOL MEANING - EN166:

1: optical class allowing permanent wear of the spectacles

Mandatory performances

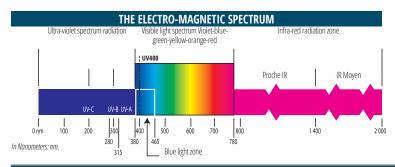
- **S**: Increased robustness: steel ball of 22 mm diameter at 5.1 m/s. (18.36 km/h)
- **F**: Low energy impact: steel ball of 6 mm diameter at 45 m/s. (162 km/h)
- **B**: Medium energy impact: steel ball of 6 mm diameter at 120 m/s. (432 km/h)
- **A:** High energy impact: steel ball of 6 mm diameter at 190 m/s. (684 km/h)

Optional performances

- **3**: Liquid resistance (droplets or splashes).
- **4**: Large dust particles resistance (size of $> 5 \mu m$).
- **5**: Gas and fine dust particles resistance (size $< 5 \mu m$).
- 8: Short circuit electric arc resistance.
- **9**: Resistance to splashes of molten metal and penetration of hot solids.
- **T**: (F B A) Mechanical resistance to extreme temperatures -5°C/+55°C.
- \boldsymbol{N} : Resistance to fogging of lenses.
- **K**: Resistance to surface damage by fine particles (anti-scratch).

FILTERS

Special filters can eliminate certain parts of light and a high proportion of the electro-magnetic spectrum (ultraviolet rays, infrared rays...)..

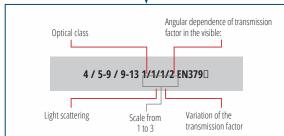

	SPECTACLES LENS MARKING										
				EN166							
Lens colour		Minimal transmission		UV FILTER	S (EN170)	IR FILTERS (EN171)	SUN FILTER	RS (EN172)	WELDING (EN169)		
			SCALE Nr	2	2C	4	5	6			
		factor of visible light	SCALL IVI	Colours perception may be alterated	Colours perception is not alterated		Without IR protection specification	With IR protection specification	no code nr		
CLEAR		80,0%	1,1				5-1,1	6-1,1			
3	INDOOR	74,4%	1,2	2-1,2	2C-1,2	4-1,2					
SMOKE SMOKE - NODGOR - NODGOR	58,1%	1,4	2-1,4	2C-1,4	4-1,4	5-1,4	6-1,4				
	OUTDOOR	43,2%	1,7	2-1,7	2C-1,7	4-1,7	5-1,7	6-1,7			
	+ INDOOR	29,1%	2	2-2	2C-2	4-2	5-2	6-2			
SMOKE	OUTDOOR	17,8%	2,5	2-2,5	2C-2,5	4-2,5	5-2,5	6-2,5			
SMC	OUTDOOR	8,0%	3,1				5-3,1	6-3,1			
		8,5%	3	2-3	2C-3	4-3			3		
		3,2%	4	2-4	2C-4	4-4	5-4,1	6-4,1	4		
		1,2%	5	2-5	2C-5	4-5			5		
6		0,44%	6			4-6			6		
VERY DARK (FOR WELDING)		0,16%	7			4-7			7		
≪		0,061%	8			4-8			8		
<u>B</u>	MIG-TIG	0,023%	9			4-9			9		
DARK	MIG-11G	0,085%	10			4-10			10		
ER		0,0032%	11						11		
>	Ā	0,0012%	12						12		
		0,00044%	13						13		
		0,00016%	14						14		
		0,000061%	15						15		
		0,000023%	16						16		

Lens marking is composed by 2 numbers (separated in the middle by a "-"):

 CODE NUMBER:
 from 2 to 6. Welding lens have no code number.

 SCALE NUMBER
 from 1,1 (the highest % of transmission in visible light, the clearest lens).

 DELTA PLUS RANGE:
 The yellow coloured possibilities are available on DELTA PLUS range.

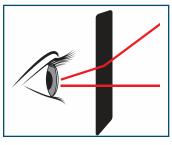


RISKS TO THE EYE FROM HARMFUL RADIATION							
Zone	Wave Length	Environment	Eyesight damage				
UV-A	315-380 nm	Outdoor work.	Eye fatigue, partial blindness, cataract. Sunshine.				
UV-B	280-315 nm	Sunlight. Industrial environment. Black light tests.	Cataract. Welder flash. Arc flash.				
UV-C	100-280 nm	Industrial environment. Arc welding.	Cornea or crystalline lesions. Loss of eyesight.				
Harmful blue light	380-465 nm	Industrial environment. Computer work (fatigue, VDU). Electrical installations. Outdoor work.	Retinal lesions. Loss of eyesight. Blurring degeneration (age). Retinitis pigmentosis.				
Infra-red	780-1400 nm (near IR) 1400-2000 nm (IR mid)	Electric welding. Molten work (glassmaking, steel production). Micro-wave processes. Sunlight.	Retinal lesions. Blurring degeneration (age). Retinitis pigmentosis (near-IR). Crystalline and cornea lesions (mid-IR).				

WELDING

1 Optical class:

Means the distortion of the image when viewed through the screen


2 Light scattering:

Means the clarity and sharpness of the screen. Is the image blurred?

Variation of the transmission factor:

Refers to the consistency of the shade of the screen when adjusted. No very dark or very light area should appear on the screen.

Angular dependence of transmission factor in the visible:

The clarity of the screen must remain the same depending on the angle between our view and the selfobscuring screen.

ARC WELDING

			PROCESS																												
		IMMA	MAG	TIG	MIG (heavy metals)	MIG (lightmetals)	Arc air gouging	Plasma cutting	Micro plasma welding																						
	1.5								,																						
	6			8					4																						
	10	8		0					5																						
	15	Ü	8																												
	30 40				9			9	6																						
	60			9		10	10	10	7																						
	70	9							8																						
	100		9	10																											
rant (A)	125	10	10						9																						
Intensité du courant (A)	150			11	10			10 11	10																						
Intensit	175	11	11	"				''																							
	200																									Н	11	11	11	12	11
	225	12		12		12	12																								
	250		12	12	12				12																						
	300 350			13		13	13	13																							
	400	13			13																										
	450		13		14	14	14																								
	500	14					15																								
	600	.,	14				.,																								

HOW TO PROTECT YOURSELF?

To choose the correct safety helmet.

To identify the risk: falling bumps or combined risks (hearing protection and face protection). The safety helmet has three functions:

Antipenetration for an effective skull protection.

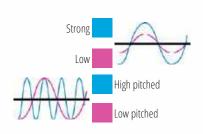
Shock absorber because the cap and the harness absorb shocks.

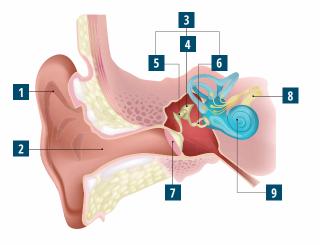
Deflector thanks to a suitable design which makes it possible to deflect the fall of an object from the top of the head.

There is in addition a selection of accessories which offers face and hearing protection.

STANDARDS

EN397	Protective helmets for industry	VAL MANDATORY	Impact*: force transmitted to the headform must not exceed 5 kN at the fall of an object of 5 kg from a 1 m height. The impact energy of the helmet at the end of the test is 49 J. Penetration*: the tip of the mass used in the test (3 kg over 1 m) must not come into contact with the skull. Flammability: the helmet should not burn with flame emission more than 5 seconds after removal of the flame. * The impact and penetration tests are performed at room temperature, at 50°C and at -10°C. In extreme temperatures: impact and penetration tests are conducted at room temperature at 150°C, at -20°C or -30°C. Protects against accidental short-term contact with a live electrical conductor up to 440 VAC.
	Pro	OPTIONAL	Protects against lateral compression. The maximum deformation of the helmet should be ≤ 40 mm. Resistance to molten metal splashes.
EN50365	Electrical insulation helmets for use in low voltage environment	MANDATORY	Electrically insulating helmets for use near energised equipment not exceeding 1000 VAC or 1500 VDC (appliance class 0). Used simultaneously with other electrically insulating protective equipment, these helmets prevent dangerous currents passing through to the person's head. These optional electrical insulation tests are more stringent than the EN397 and they complement them. (2 triangle marking, Class 0).
ANSI/ISEA Z89.1	(American National Standards Institute) American standard for head protection in industry	OBLIGATOIRES	Type 1: The impact force transmitted to the cap must not exceed 4,450 N when a 3.6 kg (8 lb) impact is dropped at a speed of 5.5 m/s (metres per second). Penetration: A 1 kg penetrator must not come into contact with the false head at a speed of 7.0 m/s. Flammability: the helmet must not burn with the emission of a flame for more than 5 seconds after the flame has been withdrawn Electrical resistance: proof test at 20,000 volts for class E or 10,000 volts for class G. Class C offers no protection against electrical hazards. Type 2: In addition to the requirements of type 1, type 2 head protection must also satisfy: Energy attenuation: the acceleration must not exceed 150 g in the event of a fall onto the cap and sideways using a 5 kg dummy head at 3.5 m/s. Lateral penetration: At the front, rear and sides, a 1 kg penetrator must not come into contact with the headform at a speed of 5.0 m/s.
A	(America Institute) head p	OPTIONAL	ANSI/ISEA Z89.1 4 options: low temperature (LT), high temperature (HT), reverse wear position and high visibility.
EN812	Bump caps for industry	MANDATORY	Impact*: This PPE protects against impacts from knocks against structures or objects. It does not protect from the impact of a falling object at all. The impact energy of the cap at the end of the test reached 12.25 J. Penetration*: the tip of the mass used in the test (0.5 kg over 0.5 m) must not come into contact with the skull. * The impact and penetration tests are performed at room temperature, at 50°C and at -10°C. Should in no way be a substitute for an industry type helmet (EN397).
- E	Bump caps	OPTIONAL	In extreme temperatures: impact and penetration tests are conducted at room temperature at -20°C or -30°C. Protects against accidental short-term contact with a live electrical conductor up to 440 VAC. Flammability: the helmet must not burn with flame emission more than 5 seconds after removal of the flame (F marking).


HELMET MARKING ILLUSTRATION



Noise-related hearing loss is the most common occupational disease in Europe and North America, accounting for almost one-third of all work-related illnesses. These disorders can lead to long-lasting effects causing stress, fatigue or isolation that significantly increases the risk of work-related accidents caused by other factors. Hearing loss is irreversible and often detected late, so PPE covering this risk is classified as Category III in Europe.

THE EAR AND SOUND

Pinna

2 Ear canal

3 Small bones

4 Anvil

5 Hammer

6 Stirrup

7 Eardrum

/ Earuruii

8 Auditory nerve

9 Cochlea

Noise, as a vibratory phenomenon is Characterised by:

- Its intensity (in decibels [dB]) corresponds to the amplitude of the vibrations emitted by the sound source. 0 dB corresponds to the minimum sound level audible by the human ear. The pain threshold is 120 dB and the ear can be damaged from 85 dB.
- Its frequency (in Hertz [Hz]) which will define the perceived height. The higher the frequency and the higher pitched the sound, the lower it is and the lower pitched it will be. The human ear is able to perceive sounds at frequencies between 20 Hz (very low pitch) and 20,000 Hz (very high nitch)
- Its duration and its variation, which makes it possible to differentiate very brief sounds, of a duration in the order of a second, such as impulse noises (a shot, impacts) of sounds that have longer durations (hours, or a day) for which it is important to consider the resulting dose of noise received.

DB(A)

The human ear has a particular sensitivity to each frequency range. At moderate sound levels, it is less sensitive to low pitched sounds. To represent this particular sensitivity, the noise measurements and standards use a weighting of the measured sound levels called weighting A. The thus weighted decibels are denoted dB (A).

The ear can be broken down into three distinct parts:

- The outer ear consisting of the horn and the ear canal
- The middle ear between the eardrum and the inner ear. It is filled with air and allows, using the ossicles, to transform the aerial vibrations into structure borne vibrations that can be analyzed by the inner ear.
- The inner ear, the heart of the auditory system, consisting of a cavity filled with liquid containing the cochlea where the body of Corti is found. Within it, the vibrations of the liquid transmitted to the ossicles are picked up by the hair cells which select them by frequency. The information is then conducted by the auditory nerve to the cerebral cortex which can interpret it.

COMMENT BIEN SE PROTÉGER?

To choose the correct product for hearing protection.

- Identify the nature of the noise: stable, fluctuating, intermittent, pulse.
- Measure the noise at the working station: intensity (dB) and volume (Hz).
- Determine the exposure time
- Calculate the reduction necessary to return on an acceptable ambient level (see Directive 2003/10/CF).

Requirements Directive 2003/10/EC: Minimum requirements for the protection of workers against the risks related to noise exposure

8 hours exposure time at ≥ 85 dB(A)	8 hours exposure time at ≥ 80 dB(A) and < 85 dB(A)	8 hours exposure time at > 75 dB(A) and < 80 dB(A)
Obligatory hearing protection	Hearing protectors available to the worker	Hearing protection recommended

The performance of the hearing protector (its attenuation level) must be adapted to the risk assessment of the workplace. It should bring the noise level to a level that is not harmful to health, while avoiding overprotection would cut the operator from his environment (warnings, communication...)

REGULATORY DAILY DOSE AUTHORISED ACCORDING TO THE SOUND LEVEL

Sons continus	Niveau de pression acoustique continu équivalent en dB(A)	85 dB(A)	91 dB(A)	100 dB(A)	112 dB(A)
Sons continus	Durée journalière d'exposition équivalente à une exposition de 85 dB	8 heures	2 heures	15 minutes	1 minute
Sons impulsionnels	Niveau de pression acoustique de crête (en dB)	135 dB	115 dB	95 dB	90 dB
	Nombre limite d'impulsions ou de chocs pour 8 heures	1	100	10 000	30 000

WEARING RATE

Hearing protection decreases very rapidly when the protector is not worn continuously

2 mn of non-wearing (over 8h) => reduction of efficacy of the protector by 25%

2 hours of non-wearing (over 8 hours) => loss of efficacy of the protector by 75%

MODO DE USO

When hearing protection equipment can be worn in several ways (on the head and under the chin for example), it must be tested for each method of wearing.

OTH:

Over the head

UTC:

Under the chin

BTH:

Behind the head

STANDARDS

• EN352: Exigences of safety and tests.

• EN352-1: the ear-muffs.

• EN352-2: the earplugs.

• **EN352-3**: the adjustable head defenders for the safety helmets.

• **EN352-4**: Noise cancelling headphones with level dependent attenuation.

• EN352-6: Earmuffs with electrical audio input.

• **EN352-8**: Audio enabled earmuffs. These standards establish requirements with regards to the manufacture, the design, performances and test methods. They stipulate the putting at disposal relative to the characteristics.

• **EN458**: Hearing protection Recommendations for selection, use and maintenance.

 ANSI (US American National Standards Institute) S3.19 - 1974
 This standard specifies the test method for determining the level of noise attenuation (NRR Noise Reduction Rating) of the hearing protection, as recommended by the EPA (U.S. Environmental Protection Agency).

SOUND LEVEL MITIGATION VALUES

HOW DO YOU USE THE ATTENUATION VALUES?

 $\ensuremath{\mathtt{3}}$ indicators, from the simplest to the most precise are made available to the user:

- SNR (Single Number Rating): Single average value of attenuation.
- HML: Attenuation values expressed in terms of average levels of frequency:
 - **H**: Attenuation of PPE at high frequencies (pitched noises)
 - M: Attenuation of PPE at medium frequencies
 - L: Attenuation of PPE at low frequencies (bass sounds)
- APV (Assumed Protection Value): Attenuation values expressed on 8 specific frequency levels (see the data sheet of the hearing protector).

DOUBLE PROTECTION

When wearing a single hearing protector is not enough, it is possible to combine them. The attenuation resulting from the simultaneous wearing of earplugs with a B SNR and a noisecancelling headset with an ST SNR is calculated by the following formula: $33 \times log((0.4 \times B) + (0.1 \times ST))$

LEVEL OF NOISE

European Directives: End user's obligations

89/391: Identify and assess the risk, take preventive and protective measures, inform and train the workers.

2004/37: Risks related to exposure to carcinogens or mutagens at work: hazard identification, «limit values», respiratory protection.

89/656: Select and use the appropriate and compliant PPE, inform and train people, check and replace the PPE when necessary.

STANDARDS

The main standards concerning the respiratory apparatuses.

• EN136: overall masks

It contains laboratory tests and practical performance tests to check the conformity with resistance to temperature, to impacts, to flame, to thermal radiation, to traction, resistance to cleansers and disinfectants. Furthermore, the visual inspection must concern the marking and the manufacturers' information guide.

• EN140: half-masks and quarter-masks

It contains laboratory tests and practical performance tests to check the conformity with resistance to impacts, to cleaners and disinfectants, to temperature, to flame and respiratory resistance.

• EN14387: gas filters and compound filters

It contains laboratory tests to check the conformity with resistance to impacts, to temperature, to humidity and corrosive atmospheres, and with mechanical and respiratory resistance.

• EN143: filters against particles

It contains laboratory tests to check the conformity with resistance to impacts, to temperature, to humidity and corrosive atmospheres and with mechanical and respiratory resistance.

• EN149 : filtering half-masks

It contains laboratory tests to check the conformity with resistance to impacts, to cleansers and disinfectants, to temperature, to flame and with respiratory resistance.

• **EN405**: half-masks fitted with valves and gas filters or compound filters It contains laboratory tests to check the conformity with resistance to handling and wear, to impacts, to flame and with respiratory resistance.

• EN148-1: standard threaded joint

This standard is specific to the standard connection system of the cartridge for full face masks.

NIOSH (US National Institute for Occupational Safety) 42 CFR Part84 Filtering facial parts, multiple levels of protection (non exhaustive list):

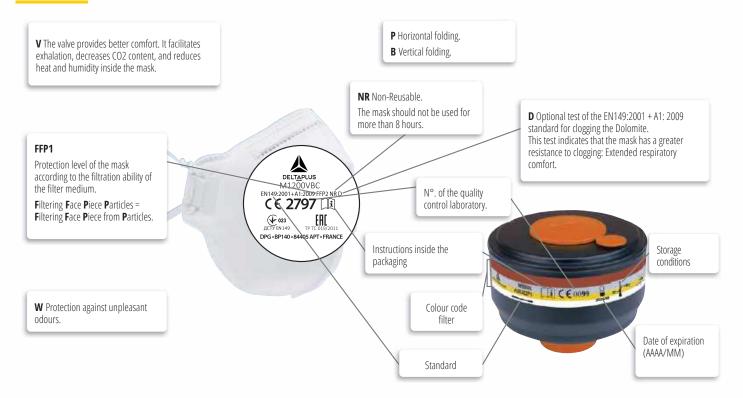
- **N95**: Filter at least 95% of the particles (non-oily) suspended in the air.
- **N99**: Filter at least 99% of the particles (non-oily) suspended in the air.

PRODUCTS	STANDARDS	TOTAL INWARD LEAKAGE** (%)	NOMINAL PROTECTION FACTOR*
FFP1	EN149	22	4
FFP2	EN149	8	12
FFP3	EN149	2	50
½ mask P1 ½ mask gas XP1	EN140 EN14387 EN143 + A1	22	4
½ mask P2 ½ mask gas XP2	EN140 EN14387 EN143 + A1	8	12
½ mask P3 ½ mask gas XP3	EN140 EN14387 EN143 + A1	2	48
½ mask gas X	EN140 EN14387	2	50
Full Face Mask P3	EN136 EN143 + A1	0,1	1000
Full Face Mask gas XP3	EN136 EN14387 EN143 + A1	0,1	1000
Full Face Mask gas X	EN136	0,05	2000

*NPF : Nominal Protection Factor corresponds to the level of protection tested in the laboratory.

The Level of APF, Assigned Protection Factor, might be different according local regulations

^{**}TIL: Leakage of the ambient atmosphere into the respiratory interface measured in laboratory



http://respiratory.deltaplus.eu

MARKING

GAS AND VAPOUR FILTER

Each filter or cartridge is identified with a colour code.

TYPE	PROTECTION	GAS AND VAPOUR
$\left[\begin{array}{c}A\end{array}\right]$	Protects from organic gases and vapours whose boiling point is > 65°C	Alcohol, acetic acid, ether, hexane, toluene, xylene, white spirits, thiophenol*
AX	Protects from organic gases and vapours whose boiling point is ≤ 65°C	Acetone, acetaldehyde, ethyl ether, butane, methanol, trichloromethane*
В	Protects from inorganic gases and vapours	Chlorine, chlorine dioxide, fluorine, formaldehyde, phosphine*
Е	Protects from sulphur dioxide and some acid vapours and gases	Sulphur dioxide*
K	Protects from ammoniac and some amine derivatives	Ammonia, ethylamine, methylamine*
Hg	Protection from mercury vapours	Mercury and mercury compounds*

FILTER ABSORPTION CLASS FOR GASES AND VAPOURS				
Class 1	Low capacity filter (pollutant concentration < 0.1% or 1000 ppm).			
Class 2	Average capacity filter (pollutant concentration < 0.5% or 5000 ppm).			
Class 3	High capacity filter (pollutant concentration < 0.1% or 10,000 ppm).			
ppm	Concentration in parts per million.			

DUST AND AEROSOL FILTERS

ТҮРЕ	PROTECTION	PARTICLES
P1	Protects from non-toxic dust and / or waterbased aerosols.	Cement dust, flour, calcium carbonate (chalk), graphite, cotton, concrete*
P2	Protects from slightly toxic or irritating solid aerosols and / or liquids.	Untreated softwood, grinding, cutting, welding, milling, coal, fibre glass, mineral fibre, graphite, pesticide powder*
P3	Protects from solid aerosols and / or liquids listed as toxic.	Asbestos (without manipulation), pesticide powder, biological agents, pharmaceutical powder, treated wood, hard wood (exotic), chrome, lime, lead, graphite*
		Manganese, kaolin, sodium hydroxide (caustic soda), quartz, silica*

 * This type of usage is indicative and cannot engage Delta Plus Responsibility.

http://respiratory.deltaplus.eu

USER GUIDE FOR BREATHING APPARATUS FILTER FOR POLLUTING SUBSTANCES

Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of neasurement
1- chloro- 2,3- epoxy- propane	C3H5OCI	106-89-8	А	P3	MC	VLE=2	ppm
1,1,1-Trifluoro-2-bromo-2-chloroethane	CF3CHBrCl	151-67-7			ARI or A AIR	2,000	ppm
1,1,2,2- tetrabromoethane	CHBr2CHBr2	79-27-6	A	P3	MC	1	ppm
1,1'-Ethylene-2,2'-bipyridyllium dibromide	C12H12N2Br2	85-00-7		P3	MC	0,50	mg/m3
1,2,3,4,5,6,7,8-octachloronaphthalene	C10Cl8	2234-13-1	A	P3	MC	0	mg/m3
1,2,4- Trichlorobenzene	C6H3Cl3	120-82-1	Α	P3	MC	5,00	ppm
1,2,4-Benzenetricarboxylic anhydride	C9H4O5	552-30-7	A	P3	MC	0,04	mg/m3
1,2-Benzenedicarboxylic anhydride	C6H4(CO)2O	85-44-9		P3	MC	1,00	ppm
1,2-Dibromo-2,2-dichloroethyl dimethyl phosphate	(CH3O)2P(O)OCHBrCBrCl2	300-76-5	A	P3	MC	3,00	mg/m3
1,2-dichloroethane	CICH2CH2CI	107-06-2	A		MC	10,00	ppm
1,2-Dihydroxybenzene	C6H4(OH)2	120-80-9	A	P3	MC	5	mg/m3
1,2-Ethanediamine	NH2CH2CH2NH2	107-15-3	K		MC	10,00	ppm
1,2-ethanediol	HOCH2CH2OH	107-21-1	A	P3	MC	50,00	ppm
1,3- butadiene	CH2=CHCH=CH2	106-99-0	AX		MC	VLE= 1	ppm
1,4- dichlorobenzene	C6 H4 CI2	106-46-7	A		MC	75,00	ppm
1,4-benzenediamine	C6H4(NH2)2	106-50-3	A	P3	MC	0	mg/m3
1,4-dihydroxybenzene	C6H4(OH)2	123-31-9	Α	P3	MC	2	mg/m3
1,4-dinitrobenzene	C6H4(NO2)2	100-25-4	A	P3	DM or MC	1,000	mg/m3
1,5-diisocyanatonaphthalene	C10H6(NCO)2	3173-72-6	A2B2	P3	MC	0,10	mg/m3
1,5-pentanedial	OCH(CH2)3CHO	111-30-8	A2	P3	MC	0,20	ppm
1,6- hexanolactam	C6H11NO	105-60-2	A	P3	MC	0,22	ppm
1-Chloro-2-methylbenzene	CIC6H4CH3	95-49-8	Α		MC	50,00	ppm
1-Chloro-2-propene	CH2=CHCH2CI	107-05-1	AX		MC	1,00	ppm
1-Hydroxybutane	CH3CH2CH2CH2OH	71-36-3	A		MC	50,00	ppm
1-Methoxy-2-propanol	CH30CH2CHCH3	107-98-2	A		MC	100	ppm
1-Methylpropyl acetate	CH3COOCH(CH3)CH2CH3	105-46-4	A	P3	DM or MC	200	ppm
1-Propen-3-ol	CH2=CHCH2OH	107-18-6	A		MC	2	ppm
1-Propyn-3-ol	C3H3OH	107-19-7	A		MC	1	ppm
2- butoxyethanol	C4H9OCH2CH2OH	111-76-2	A	P3	MC	25,00	ppm
2- Diethylaminoethanol	(C2H5)2NCH2CH2OH	100-37-8	K	15	MC	10,00	ppm
2- ethoxyethyl acetate	CH3COOCH2CH2OCH2CH3	111-15-9	A		MC	1	ppm
2- ethylhexyl chloroformate	CI1 C7 02 H12	24468-13-1	A	P3	DM or MC	1	ppm
2- furaldehyde	C5H402	98-01-1	A	1.0	MC	2,00	ppm
2- Methoxyethyl acetate	CH3COOCH2CH2OCH3	110-49-6	A		MC	0	
2- Methylaziridine	C3H7N	75-55-8	K	P3	MC	2,00	ppm
2- methylpentane- 2,4- diol	(CH3)2COHCH2CHOHCH3	107-41-5	A	ro ca	DM or MC	25	ppm
2- nitronaphthalene			A	Р	DM or MC	23	ppm
2- Pyridylamine	C10H7NO2 NH2C5H4N	581-89-5 504-29-0	A	P3	DM or MC	2	mg/m3
2,2'-Diaminodiethylamine	NH2CH2CH2)2NH	111-40-0	ABEK	P3	MC	1,00	ppm
2,2'-dihydroxydiethyamine	(HOCH2CH2)2NH	111-42-2	K	P3	MC	3	ppm
2,2-Dichlorovinyl dimethyl phosphate	(CH30)2P(0)0CH=CCl2	62-73-7	A	P3	MC	0,10	
2,3- epoxypropyl isopropyl ether	(CH3U)2P(U)UCH-CCI2 C6H12O2	4016-14-2	A	P3	MC	50	ppm
	C6CI5OH	87-86-5	A	P3			ppm ppm
2,3,4,5,6-pentachlorophenol			A	-	MC	1	mg/m3
2,4- dichlorophenoxyacetic acid	CI2C6H3OCH2COOH	94-75-7		P3	MC	10	mg/m3
2,4,5-Trichlorophenoxyacetic acid	CI3C6H2OCH2COOH	93-76-5		P3	DM or MC	10	mg/m3
2,4,6- trinitrophenol	(NO2)3C6H2OH	88-89-1		P3	MC	0	mg/m3
2,4,6-tetryl	(NO2)3C6H2N(NO2)CH3	479-45-8	A	P3	MC	2	mg/m3
2,5-Furanedione	C4 H2 O3	108-31-6	A	P3	MC	0,25	ppm
2-Aminotoluene	CH3C6H4NH2	95-53-4	A	P3	MC	2,00	ppm
2-butanol 2-Carbomethoxy-1-methylvinyl dimethyl	CH3CH(OH)CH2CH3	78-92-2	A		MC	100,00	ppm
phosphate	C7H13P06	7786-34-7	A	P3	MC	0	ppm
2-Chloro-1,1,2-Trifluoroethyl difluoromethyl ether	CHF2OCF2CHCIF	13838-16-9			ARI or A AIR	2,000	ppm
2-Chloro-1,3-butadiene	CH2=CCICH=CH2	126-99-8	AX	P3	MC	VLE = 1	ppm
2-chloroacetaldehyde	CICH2CH0	107-20-0	A		MC	1,00	ppm
2-Chloroethanol	CH2CICH2OH	107-07-3	A		MC	1,00	ppm
2-hydroxymethylfuran	C5H6O2	98-00-0	A		MC	10,00	ppm
2-Isopropoxy propane	(CH3)2CHOCH(CH3)2	108-20-3	A		MC	500,00	ppm
2-Mercaptoacetic acid	HSCH2COOH	68-11-1	A2B2	P3	MC	1	ppm

OEL Occupational Exposure Limit

TWA TIME WEIGHTED AVERAGE

Average Exposure limit over an 8 hour time period

STEL SHORT TERM EXPOSURE LIMIT

Should not be longer than 15 minutes Should not occur more than 4 times per day with at least 60 minutes between exposures

Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of measurement
2-methoxyethanol	CH3OCH2CH2OH	109-86-4	A		MC	5,00	ppm
2-Methylacrylic acid	CH2=C(CH3)COOH	79-41-4	A	P3	MC	20	ppm
2-methylpropenenitrile	CH2=C(CH3)CN	126-98-7	AB 450	P3	MC	1	ppm
2-Methylpropyl acetate	CH3COOCH2CH(CH3)2	110-19-0	A		MC	150.00	ppm
2-Oxetanone	C3H4O2	57-57-8			ARI or A AIR		
2-Pentanol acetate	CH3COOCH(CH3)C3H7	626-38-0	A		MC	125	ppm
2-Phenyl propylene	C6H5C(CH3)=CH2	98-83-9	A		MC	50,00	ppm
2-propenamide	CH2=CHCONH2	79-06-1	A	P3	MC	0,30	mg/m3
2-propenenitrile	CH2=CHCN	107-13-1	A	P3	MC	2,00	ppm
2-Propenoic acid	CH2=CHCOOH	79-10-7	A		DM or MC	2,000	ppm
2-Propyl acetate	CH3COOCH(CH3)2	108-21-4	A		MC	250.00 (ST)	ppm
2-Propynyl alcohol	C3H3OH	107-19-7	A		MC	1	ppm
3,3'- dichlorobenzidine salts	NH2ClC6H3C6H3ClNH2	91-94-1	A	P3	MC		
3,3'-dimethylbenzidine	C14H16N2	119-93-7	A	P3	MC	0,02	mg/m3
3,5,5- trimethylcyclohex- 2- enone	C9H14O	78-59-1	A		MC	4,00	ppm
3a,4,7,7a-Tetrahydro-4,7-methanoindene	C10 H12	77-73-6	A	P3	MC	5,00	ppm
3-Heptanone	CH3CH2CO[CH2]3CH3	106-35-4	A		MC	50	ppm
3-Methyl-1-butanol acetate	CH3COOCH2CH2CH(CH3)2	123-92-2	A		DM or MC	100	ppm
3-Methyl-5-heptanone	C2H5COCH2CH(CH3)CH2CH3	541-85-5	A		MC	25	ppm
4- Methylpentan- 2- One	CH3COCH2CH(CH3)2	108-10-1	A		MC	50	ppm
4,4'- Methylenedianiline (mda)	CH2(C6H4NH2)2	101-77-9	A	P3	MC	0,01	ppm
4-Hydroxy-4-Methyl-2-Pentanone	CH3COCH2C(CH3)20H	123-42-2	A		MC	50	ppm
4-Nitroaniline	C6 H6 N2 02	100-01-6	A	P3	MC	6	mg/m3
4-nitrochlorobenzene	CIC6H4NO2	100-00-5	AB	P3	MC	1,00	mg/m3
5-Methyl-2-hexanone	CH3COCH2CH2CH(CH3)2	110-12-3	A		MC	50	ppm
6,9-methano-2,4,3-benzo-dioxathiepin-3-oxide	C9H6Cl6O3S	115-29-7	A	P3	MC	0	mg/m3
Acetaldehyde	CH3CH0	75-07-0	AX		MC	100	ppm
Acetic acid	CH3COOH	64-19-7	A	P3	MC	10.00	ppm
Acetic ester	CH3COOC2H5	141-78-6	A		MC	400.00	ppm
Acetic oxide	(CH3CO)2O	108-24-7	A		MC	5	ppm
Acetylene	C2H2	74-86-2			ARI or A AIR	2500	ppm
Acraldehyde	CH2=CHCHO	107-02-8	AX 450		MC	0	ppm
Age	C6H10O2	106-92-3	A		MC	5	ppm
Aldrin	C12H8Cl6	309-00-2	AB	P3	DM or MC	0.25	mg/m3
Alpha- chlorotoluene	C6H5CH2CI	100-44-7	A		MC	1	ppm
Alpha-chloroacetophenone	C6H5COCH2CI	532-27-4	ABEK	P3	MC	0,30	ppm
Alpha-starch	(C6H10O5)n	9005-25-8		P3	MC	5,00	mg/m3
Aluminium metal (respirable dust)	Al	7429-90-5		P2/P3	DM or MC	5,000	mg/m3
Aluminum trioxide	Al203	1344-28-1		P3	DM or MC	4	mg/m3
Amidocyanogen	NH2CN	420-04-2		P3	DM or MC	2,000	mg/m3
Aminocyclohexane	C6H11NH2	108-91-8	A		DM or MC	10,000	ppm
Aminodimethylbenzene	(CH3)2C6H3NH2	1300-73-8	K		DM or MC	2	ppm
Aminomethane	CH3NH2	74-89-5	K		MC	10	ppm
Ammonia	NH3	7664-41-7	K		MC	25	ppm
Ammonium amidosulfonate	NH40S02NH2	7773-06-0		P3	MC	5,00	mg/m3
Ammonium chloride	NH4Cl	12125-02-9	K	Р	MC	10	mg/m3
Amyl acetic ether	CH3C00[CH2]4CH3	628-63-7	A		MC	100	ppm
Anhydrous hydrogen bromide;	H Br	10035-10-6	В	P3	MC	3	ppm
Anone	C6H100	108-94-1	A		DM or MC	25,000	ppm
Antimony and compounds (as sb)	Sb	7440-36-0		P3	MC	MEL	mg/m3
Antimony hydride	SbH3	7803-52-3			ARI or A AIR	0	ppm
Antimony trioxide	03 Sb2	1309-64-4		P3	DM or MC	0,500	mg/m3
Argon	Ar	7440-37-1			ARI or A AIR		ppm
Arsenic & compounds except arsine	As	7440-38-2		P3	MC	0,15	mg/m3
Arsenic trihydride	AsH3	7784-42-1			ARI or A AIR	0,020	ppm
Arsenic trioxide	As203	1327-53-3			ARI or A AIR	0,200	mg/m3
Artificial barite	BaSO4	7727-43-7		P3	MC	0,50	mg/m3
ASBESTOS, amiante	Hydrated mineral silicates	1332-21-4	PAPR	P3	MC	MEL	fibres/ml
Asphalt, petroleum fumes	n/ a	8052-42-4			ARI or A AIR	5	mg/m3
Atrazine (iso)	C8H14CIN5	1912-24-9		P3	DM or MC	5,000	mg/m3
		*This list is i	ndicative	and can	not engage De	lta Plus Rest	onsibility.

 $\ensuremath{^{\star}}\xspace This list is indicative and cannot engage Delta Plus Responsibility.$

Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of measurement
Azimethylene	CH2N2	334-88-3	ABEK	P3	MC	0,20	ppm
Azirane	C2H5N	151-56-4	K 450		MC		ppm
Azium	NaN3	26628-22-8		P3	DM or MC	0	mg/m:
Azodicarbonamide	C2H4N4O2/NH2CON=NCONH2	123-77-3	A	P3	MC	MEL	mg/mi
Barium compounds soluble (as ba)	Ba	7440-39-3		P2/P3	DM or MC	1	mg/mi
Basudin®	C12H21N2O3PS	333-41-5	BE	P3	MC	0,10	mg/mi
BCME [Bis (chloromethyl) ETHER] Benomyl (iso)	(CH2CI)20 C14H18N4O3	542-88-1 17804-35-2	A2 A	P3	MC DM or MC	0,05 5.000	mg/m: mg/m:
Benzenamine	C6H5NH2	62-53-3	A	P3	MC	2,00	ppm
Renzene	C6H6	71-43-2	A 450	13	MC	1,00	ppm
Benzene chloride	C6H5Cl	108-90-7	A		DM or MC	75,000	ppm
Benzene hexahydride	C6 H12	110-82-7	А		DM or MC	300,000	ppm
Benzyl butyl phthalate	C19 H20 O4	85-68-7	Α	Р	DM or MC	5,000	mg/m
Beryllium and compounds	Be	7440-41-7		P3	MC	VLE	mg/m
Beta-Aminoethyl alcohol	NH2CH2CH2OH	141-43-5	A		MC	3	ppm
Beta-Hydroxypropyl acrylate	CH2=CHCOOCH2CHOHCH3	999-61-1	A		MC	1	ppm
BGE	C7 H14 O2	2426-08-6	A		MC	5,60	ppm
Biotite	H2KAl3(SiO4)3	12001-26-2		P3	DM or MC	3,000	mg/m
Bipotassium chromate	K2 Cr O4	7789-00-6			ARI or A AIR		mg/m
Bis(2- ethylhexyl) phthalate	C24H38O4	117-81-7	A	P3	DM or MC	5,000	mg/m
Bis(2,3- epoxypropyl) ether	C6H1003	2238-07-5	A	P3	MC	0,10	ppm
Bismuth telluride Borates, (tetra) sodium salts	Bi2Te3 Na2B4O7	1304-82-1 1330-43-4		P3	MC DM or MC	5,00	mg/m
Borates, (tetra) sodium saits Borax decahydrate	Na2B4O7 • 10H2O	1303-96-4		P3	DM or MC	5,00	mg/m mg/m
Boric anhydride	B203	1303-90-4		P3	DM or MC	10,000	mg/m
Bornan- 2- one	C10H160	76-22-2	A	P3	DM or MC	2,000	mg/m
Boron fluoride	BF3	7637 07 02	Λ.	1.0	ARI or A AIR	1,000	ppm
Boron hydride	B2H6	19287-45-7	В	P3	MC	0,10	ppm
Bromacil (iso)	C9H13BrN2O2	314-40-9	AB	P3	DM or MC	1,000	ppm
Bromine	Br2	7726-95-6	В	P3	MC	0,10	ppm
Bromine fluoride	BrF5	7789-30-2	AX		MC	0,10	ppm
Bromoethane	CH3CH2Br	74-96-4	AX		MC	200,00	ppm
Bromoethylene	CH2=CHBr	593-60-2	AX		DM or MC	5,000	ppm
Bromoform	CHBr3	75-25-2	A		MC	0,50	ppm
Bromomethane	CH3Br	74-83-9	AX		MC	5	ppm
Butane	CH3CH2CH2CH3	106-97-8	AX		DM or MC	600,000	ppm
Butyl acrylate	CH2=CHCOOC4H9	141-32-2	A		MC	10,00	ppm
Butyl ester of 2-hydroxypropanoic acid	CH3CH(OH)COOC4H9	138-22-7	A	P3	DM or MC	5,000	ppm
Butyl ethanoate	CH3COO[CH2]3CH3	123-86-4	A		MC	150	ppm
Butyl methyl ketone /MBK	CH3CO[CH2]3CH3	591-78-6	A		MC	5,00	ppm
Butylamine	CH3CH2CH2CH2NH2	109-73-9	BK	00	MC	5,00	ppm
Cadmium Cassium hudsavida	Cd S CsOH	7440-43-9 21351-79-1	В	P3	DM or MC DM or MC	VLE=0,05 2,000	mg/m
Caesium hydroxide Calcium carbimide	CaCN2	156-62-7	D		ARI or A AIR	0,500	mg/m mg/m
Calcium carbonate	CaCO3	1317-65-3		P3	DM or MC	5,000	mg/m
Calcium hydrate	Ca(OH)2	1305-62-0		P3	DM or MC	5,000	mg/m
Calcium monosilicate	CaSiO3	1344-95-2		P2/P3	DM or MC	5,000	mg/m
Calcium sulfate hemihydrate	CaSO4 • 0.5H2O	26499-65-0		P3	DM or MC	5,000	mg/m
Captafol (iso)	C10H9Cl14N02S	2425-06-1	A		MC	0,10	mg/m
Carbaryl (iso)	CH3NHCOOC10H7	63-25-2	A		DM or MC	5,000	mg/m
Carbofuran (iso)	C12H15N03	1563-66-2	A	P3	DM or MC	0,100	mg/m
Carbolic acid	C6H5OH	108-95-2	A	P3	MC	5	ppm
Carbon black	C	1333-86-4		P3	MC	3,50	mg/m
Carbon dioxide	CO2	124-38-9			ARI or A AIR	5000,000	ppm
Carbon disulphide	C S2	75-15-0	AX		MC	10,00	ppm
Carbon hexachloride	CI3CCCI3	67-72-1	A	P3	MC	1,00	ppm
Carbon monoxide	СО	630-08-0			ARI or A AIR	30,000	ppm
Carbon tetrachloride	CCI4	56-23-5	A		MC	2,00	ppm
Carbonyl chloride	COCI2	75-44-5	В	P3	MC	0,10	ppm
Carboxyethane	CH3CH2COOH	79-09-4	A	P3	MC MC	200.00	ppm
CB Cd: Cadmium	CH2BrCl	74-97-5	A	במ	MC	200,00	ppm
Cd: Cadmium Cellosolve®	Cd0/Cd	1306-19-0	Α.	P3	MC MC	VLE=0,05	mg/m
Cellosolve® Cellulose	C2H5OCH2CH2OH	110-80-5 9004-34-6	A	P3	MC DM or MC	0,50 5,000	ppm ma/m
Cement	(C6H10O5)n as Portland Cement	65997-15-1		P2/P3	DM or MC	10,000	mg/m
Cement Chlordan	C10H6Cl8	57-74-9	A	P2/P3	DM or MC	0,500	mg/m mg/m
Chlorine	CIUHBUS CI2	7782-50-5	B	13	MC MC	0,500	mg/m ppm
Chlorine fluoride	CIF3	7790-91-2	В		MC	0,10	ppm
Chlorine oxide	(102	10049-04-4	В		DM or MC	0,100	ppm
Chloroacetic acid chloride	CICH2COCI	79-04-9	A	P3	MC	0,05	ppm

Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of neasurement
Chlorocyanide	CICN	506-77-4	B 450		MC	0,30	ppm
Chlorodimethyl ether	CH3OCH2CI	107-30-2			ARI or A AIR		
Chloroethane	CH3CH2Cl	75-00-3	AX		DM or MC	1000,000	ppm
Chloroéthanoic acid	CICH2COOH	79-11-8	A	P3	MC	0	ppm
Chloroethene	CH2=CHCl	75-01-4	AX AX		MC MC	1,00	ppm
Chloroform Chloromethane	CH3CI	67-66-3 74-87-3	ΑX		ARI or A AIR	2,00	ppm
Chloropicrin	CCI3NO2	76-06-2	A	P3	MC MC	0,10	ppm ppm
Chlorosulfuric acid	HCLO3S	7790-94-5	F	P3	MC	1,00	mg/m3
Chlorothene	CH3CCI3	71-55-6	A		MC	300,00	ppm
Chlorpyrifos	C9H11Cl3NO3PS	2921-88-2	Α	P3	DM or MC	0,200	mg/m3
Chromic acid (cro3)	Cr03	1333-82-0	BE	P3	MC	0,05	mg/m3
Chromium	Cr	7440-47-3		P3	MC	0,50	mg/m3
Cobalt and compounds (as co)	Со	7440-48-4		P2/P3	DM or MC	VLE	mg/m3
Copper, dusts and mists	Cu	7440-50-8		P3	MC	1,00	mg/m3
Crag® herbicide No. 1	C6H3Cl2OCH2CH2OSO3Na	136-78-7		P3	MC	5,00	mg/m3
Cresols (all isomers)	C7 H8 O	1319-77-2	A	P3	MC	5,00	ppm
Cumene	C6H5CH(CH3)2	98-82-8	A	D2	MC	50,00	ppm
Cyanogen chloride, (as -cn)	C- N	57-12-5 110-83-8	B A	P3	MC	5,00	mg/m3
Cyclohexene Cyclohexylmethane	C6 H10 CH3C6H11	108-87-2	A		DM or MC DM or MC	300,000 400.000	ppm ppm
DBP	C6H4(C00C4H9)2	84-74-2	A	P3	MC	5,00	mg/m3
Dca	(2012	7572-29-4	n	13	ARI or A AIR	0,100	ppm
DDH	C5H6Cl2N2O2	118-52-5	ABEK	P3	MC	0,20	mg/m3
DDT	(C6H4CI)2CHCCI3	50-29-3		P3	MC	1	mg/m3
Di- N- Butyl Phoshate	(C4H9O)2(OH)PO	107-66-4	A	P3	MC	1,00	ppm
Diallyl phthalate	C14 H14 O4	131-17-9	A	P3	DM or MC	5,000	ppm
Diammonium peroxodisulphate	N2 H8 S2 O8	7727-54-0	A	P3	MC	1,00	mg/m3
Dianiline (mboca)	CH2(C6H4CINH2)2	101-14-4	A	P3	MC	0,00	mg/m3
Diatomaceous earth, natural, respirable dust	SiO2	68855-54-9		P3	MC	1,20	mg/m3
DIBENZ(a, h) ANTHRACENE	C22 H14	65996-93-2	A	P3	MC	0,10	mg/m3
Dibenzoyl peroxide	(C6H5CO)2O2	94-36-0	A	P3	DM or MC	5,000	mg/m3
Dibromochloropropane	CH2BrCHBrCH2Cl	96-12-8			ARI or A AIR	0,001	ppm
Dibutyl phosphate	(C4H9O)2(OH)PO	107-66-4	A	P3	MC	1,00	ppm
Dibutylated hydroxytoluene	[C(CH3)3]2CH3C6H2OH	128-37-0	AV	P	MC	10,00	mg/m3
Dichloromethane Dichloromethyl ether	CH2Cl2 (CH2Cl)20	75-09-2 542-88-1	AX A2	P3	MC MC	50,00	ppm mg/m3
Dicyanogen	NCCN	460-19-5	BK	ro	DM or MC	10,000	ppm
Dicyclohexyl phthalate	C20 H26 O4	84-61-7	A	P3	DM or MC	5,000	ppm
Dieldrin (iso)	C12H8Cl60	60-57-1	A	P3	DM or MC	0,250	mg/m3
Diethyl ether	C2H5OC2H5	60-29-7	AX		MC	400,00	ppm
Diethyl phthalate	C6H4(COOC2H5)2	84-66-2	Α	P3	DM or MC	5,000	mg/m3
Diethyl sulphate	C4 H10 O4 S	64-67-5	Α	P3	MC	VLE	ppm
Diethylene imidoxide	C4H9ON	110-91-8	A		MC	20	ppm
Difluorodibromomethane	CBr2F2	75-61-6			ARI or A AIR	100,000	ppm
Diisodecyl phthalate	C28 H46 O4	26761-40-0	A	P3	DM or MC	5,000	mg/m3
Diisononyl phthalate	C26 H42 O4	28553-12-0	A	P3	DM or MC	5,000	mg/m3
Diisooctyl phthalate	C24 H38 O2	27554-26-3	A	P3	DM or MC	5,000	mg/m3
Diisopropylamine	[(CH3)2CH]2NH	108-18-9	K		MC	5	ppm
Dimethyl carbinol	(CH3)2CHOH	67-63-0	A	na	MC MC	400	ppm ppm
Dimethyl ester of 1,2-benzenedicarboxylic acid Dimethyl ether	C6H4(C00CH3)2 H6 C2 O	131-11-3 115-10-6	A	P3	MC ARI or A AIR	5,00	mg/m3 ppm
Dimethyl methane	CH3CH2CH3	74-98-6			ARI OF A AIR	1000,000	ppm
Dimethyl sulphate	(CH3)2S04	77-78-1	A	P3	MC	0,10	ppm
Dimethylacetone	CH3CH2COCH2CH3	96-22-0	A	13	DM or MC	200,000	ppm
Dimethylaminoethanol	C4H11NO/(CH3)2NCH2CH2OH		A		MC	2	ppm
Dimethylnitromethane	(CH3)2CH(NO2)	79-46-9	A	P3	MC	10,00	ppm
Dinitrogen tetroxide (N2O4),	N 02	10102-44-0	NO		MC	3,00	ppm
Diphenyl	C6H5C6H5	92-52-4	A	P3	MC	0,20	ppm
Diphenyl ether (vapor)	C6H5OC6H5	101-84-8	A	P3	MC	1,00	ppm
Dipotassium peroxodispulphate (measured as s208)*	H2 K2 O8 S2	7727-21-1	AB	Р	MC	1,00	mg/m3
Direx®	C6H3Cl2NHCON(CH3)2	330-54-1		P3	DM or MC	10,000	mg/m3
Disodium peroxodisulphate (measured as s2o8)	Na2 08 S2	7775-27-1	Α	P3	MC	1,00	mg/m3
Disodium tetraborate, decahydrate	Na2B407 • 10H20	1303-96-4		P3	MC	5,00	mg/m3
Disodium tetraborate, pentahydrate	B4 07 2Na 10H 20	11130-12-4	A	P3	DM or MC	1,000	mg/m3
Disulfoton (iso)	C8H1902PS3	298-04-4	ABE	P3	MC	0,10	mg/m3
Disulphur dichloride	S2 CI2	10025-67-9	В	P3	MC	1,00	ppm
Divanadium pentaoxide (as v)	V205	1314-62-1		P3	MC	VLE=0,005	mg/m3
DMAC	CH3CON(CH3)2	127-19-5	A	I	DM or MC	10,000	ppm

*MC/DM = Overall masks / Half-mask

Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of measurement
DMF	HCON(CH3)2	68-12-2	A		MC	10,00	ppm
DMH	(CH3)2NNH2	57-14-7	K 450		MC	0,06	ppm
Eca	C6H7NO2	7085-85-0	AXB	P3	MC	2	mg/m3
Elemental selenium	Se	7782-49-2		P3	MC	0	mg/m3
Endrine	C12H8Cl60	72-20-8		P3	MC	0,10	mg/m3
Ethane	C2 H6	74-84-0			ARI or A AIR		ppm
Ethanedioic acid	H00CC00H • 2H20	144-62-7		P3	MC	1	mg/m3
Ethanethiol	CH3CH2SH	75-08-1	AX	P3	MC	1	ppm
Ethyl acetone	CH3COCH2CH2CH3	107-87-9	A		MC	200	ppm
Ethyl acrylate	CH2=CHCOOC2H5	140-88-5	A		MC	5,00	ppm
Ethyl alcohol	CH3CH2OH	64-17-5	A		MC ADL TO A AID	1000	ppm
Ethyl chloroformate Ethyl ester of formic acid	C3H5Cl02 / ClC00C2H5 CH3CH2OCH0	541-41-3 109-94-4	AX		ARI or A AIR MC	100	ppm
Ethyl methyl ketone	CH3COCH2CH3	78-93-3	A		MC	200,00	ppm ppm
Ethyl nitrile	CH3CN	75-05-8	A		MC	40	ppm
Ethyl parathion	(C2H5O)2P(S)OC6H4NO2	56-38-2	A2	P3	MC	0	mg/m3
Ethylamine	CH3CH2NH2	75-04-7	K	13	MC	10,00	ppm
Ethylbenzene	CH3CH2C6H5	100-41-4	A		MC	100	ppm
Ethylene	C2 H4	74-85-1			ARI or A AIR		ppm
Ethylene bromide	BrCH2CH2Br	106-93-4	A		MC	0,05	ppm
Ethylene oxide	C2H4O	75-21-8	AX		MC	5,00	ppm
Ferbam (iso)	[(CH3)2NCS2]3Fe	14484-64-1		P3	MC	10	mg/m3
Ferrocene	C10 H10 Fe	102-54-5	A	Р	MC	10	mg/m3
Fluoride (as f)	F	16984-48-8	AB	P3	DM or MC	3	mg/m3
Fluorine-19	F2	7782-41-4	В		MC	1,00	ppm
Formal	CH30CH20CH3	109-87-5	AX		MC	1000,00	ppm
Formaldehyde	НСНО	50-00-0	ABE		MC	0,50	ppm
Formamide	HCONH2	75-12-7	A	P3	MC	10,00	ppm
Formic acid	НСООН	64-18-6	B/BE	P3	MC	5	ppm
Formonitrile	HCN	74-90-8	В	P3	MC	2,00	ppm
Freon® 112	CCI2FCCI2F	76-12-0	A		MC	500,00	ppm
Freon® 112a	CCI3CCIF2	76-11-9	A		MC	500,00	ppm
Freon® 113	CCI2FCCIF2	76-13-1			ARI or A AIR	1000	ppm
Freon® 114	CCIF2CCIF2	76-14-2			ARI or A AIR	1000,000	ppm
Freon® 12	CCI2F2	75-71-8			ARI or A AIR	1000,000	ppm
Freon® 21	CHCI2F	75-43-4			ARI or A AIR	10,000	ppm
Freon® 22	CHCIF2	75-45-6			ARI or A AIR	1000,000	ppm
Germanium tetrahydride	GeH4	7782-65-2			ARI or A AIR	0	ppm
Glycerol	HOCH2CH(OH)CH2OH	56-81-5	A	P3	MC	5,00	mg/m3
Glycidyl phenyl ether Glycol dinitrate	C9H1002	122-60-1 628-96-6	A	Р	MC	1	ppm
Graphite	02N0CH2CH20N02 C	7440-44-0	A	P2/P3	MC DM or MC	0,20 5,000	ppm mg/m3
Guthion®	C10H12O3PS2N3	86-50-0	A	P3	DM or MC	0	mg/m3
Gypsum	Ca S 06 H4	10101-41-4	Λ.	P3	MC	4	mg/m3
Hafnium	Hf	7440-58-6		P3	MC	1	mg/m3
Halon® 1301	(BrF3	75-63-8		13	ARI or A AIR	1000,000	ppm
Helium	He	75 05 0			ARI or A AIR	1000,000	ppm
Heptan- 2- one	CH3CO[CH2]4CH3	110-43-0	A		MC	100	ppm
Hexachlorobenzene	C6 CI6	118-74-1	A	P3	MC	0,03	mg/m3
Hexahydromethylphenol	CH3C6H100H	25639-42-3	A		MC	50	ppm
Hexalin	C6H11OH	108-93-0	А		MC	50,00	ppm
Hexamethyl phosphoramide	[(CH3) 2N] 3PO	680-31-9			ARI ou A AIR		
Hexane	CH3[CH2]4CH3	110-54-3	A		DM ou MC	50	ppm
Hydrated lime	Ca(OH)2	1305-62-0		P3	DM or MC	5,000	mg/m3
Hydrazine	H2NNH2	302-01-2	K	P3	MC	0,10	ppm
Hydrazinobenzene	C6H5NHNH2	100-63-0	A	P3	DM or MC	0,140	ppm
Hydrazoic acid (as vapour)	H N3	7782-79-8	K	P3	MC	0	ppm
Hydrogen	H2	1333-74-0 ?			ARI or A AIR		ppm
Hydrogen chloride	H CI	7647-01-0	В	P3	MC	5,00	ppm
Hydrogen fluoride (as f)	HF	7664-39-3	B 450	P3	MC	3.00 (ST)	ppm
Hydrogen nitrate	HN03	7697-37-2	B/BE/ NO	P3	MC	2	ppm
Hydrogen peroxide	H2O2	7722-84-1	AB	P3	MC	1	ppm
Hydrogen phosphide	PH3	7803-51-2	В		MC	0,10	ppm
Hydrogen sulfate	H2SO4	7664-93-9	BE 450	P3	MC	1	mg/m3
Hydrogen sulphide	H2 S	7783-06-4	В		MC	10	ppm
Hydroquinone monomethyl ether	CH3OC6H4OH	150-76-5		P3	MC	5	mg/m3
Hydrous magnesium silicate	Mg3Si4O10(OH)2	14807-96-6		P3	MC	2,00	mg/m3
Hyponitrous acid anhydride	N2 O	10024-97-2	NO.		MC	25,000	ppm
				P3	DM or MC	5	mg/m3

Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of neasurement
Indium and compounds (as in)	In	7440-74-6		P3	MC	0	mg/m3
Indonaphthene	C9 H8	95-13-6	A		MC	10	ppm
lodine	12	7553-56-2	IPR	P3	MC	0,10	ppm
Iodomethane Iron (III) oxide	CH3I Fe2O3	74-88-4 1309-37-1	AX	P3	MC DM or MC	VLE=2 5	ppm mg/m3
Iron oxide, fume (as fe)	Fe203	1309-37-1		P3	DM or MC	5	mg/m3
Iron pentacarbonyl	Fe(CO)5	13463-40-6	A	P3	MC	0	ppm
Isobutanol	(CH3)2CHCH2OH	78-83-1	A		MC	50	ppm
Isobutenyl methyl ketone	(CH3)2C=CHCOCH3	141-79-7	A		MC	10,00	ppm
Isoflurane	C3 F5 H2 Cl O	26675-46-7			ARI or A AIR	50	ppm
Isophorone diamine diisocyanate	C12H18N2O2	4098-71-9	A		MC	VLE=0,01	ppm
Isopropyl chloroformate	C4H7ClO2/(CH3)2CHOCOCI	108-23-6	A	P3	MC	1.00	ppm
Jasmolin I or II	[(CH3)2CHCH2]2CO C20H2803 / C21H2805 C21H3003 / C22H3005 C21H2803 / C22H2805	108-83-8 8003-34-7	A	P3	MC MC	25,00 5.00	ppm mg/m3
Kaolin	(Al2Si2O5(OH)4)2	1332-58-7		P3	DM or MC	5	mg/m3
Keto-ethylene	(AI25I2O5(OH)4)2 CH2=CO	463-51-4		ro	ARI or A AIR	1	ppm
Ketone propane	(CH3)2CO	67-64-1	AX		MC	500	ppm
Lead and compounds (except lead alkyls)	Pb	7439-92-1	701	P3	MC	150,00	µg/ m3
Lepidolite	n/a	12001-26-2		P3	DM or MC	3,000	mg/m3
Lime	CaO	1305-78-8		P2/P3	MC	2,00	mg/m3
Lithium hydroxide	LiOH	1310-65-2		P3	MC	1.00 (ST)	mg/m3
Lithium monohydride*	LiH	7580-67-8	A	P3	MC	0,025	mg/m3
LPG (Liquefied Petroleum Gas)	Mix : C3 H6; C3 H8; C4 H8; C4 H10	68476-85-7			ARI or A AIR	1000.00	ppm
Magnesite	MgCO3	546-93-0		P3	DM or MC	5,000	mg/m3
Magnesium oxide, fume and dust (as mg)	Mg0	1309-48-4		P3	DM or MC	15	mg/m3
Malathion (iso)	C10H19O6PS2	121-75-5	A	P3	MC	10	mg/m3
Manganese and compounds (as mn)	Mn Mn304	7439-96-5 1317-35-7		P2/P3 P3	DM or MC	1,000	mg/m3
Manganese tetroxide Manganese tricarbonylmethylcyclopentadieny	CH3C5H4Mn(CO)3	12108-13-3	A	P3	MC MC	0	mg/m3 mg/m3
Margarite	n/a	12001-26-2	Λ	P3	DM or MC	3,000	mg/m3
MD	C5H5Mn(CO)3	12079-65-1	A	P3	DM or MC	0,100	mg/m3
MDI	CH2(C6H4NCO)3	101-68-8	A	P3	MC	0,01	ppm
Mecrylate	CH2=C(CN)COOCH3	137-05-3	A	P3	MC	2,00	ppm
Mercury & its inorganic divalent compounds	Hg	7439-97-6	Hg	P3	DM or MC	0,050	mg/m3
Mesitylene	C6H3(CH3)3	108-67-8	A		MC	25	ppm
Methacrylate monomer	CH2=C(CH3)COOCH3	80-62-6	A		MC	100	ppm
Methane	CH4	74-82-8			ARI or A AIR	1 400	ppm
Methane tetrabromide	CBr4 C(CH2OH)4	558-13-4 115-77-5	A	P3	DM or MC MC	1,400 5	mg/m3
Methane tetramethylol Methanethiol	C(CH2OH)4	74-93-1	AXB	r3	MC	0,50	mg/m3 ppm
Methanol	CH3OH	67-56-1	AX		MC	200	ppm
Methomyl (iso)	CH3C(SCH3)NOC(O)NHCH3	16752-77-5		P3	MC	3	mg/m3
Methoxy-dtt	(C6H4OCH3)2CHCCl3	72-43-5	A	P3	DM or MC	15,000	mg/m3
Methyl acetate	CH3COOCH3	79-20-9	AX		MC	200.00	ppm
Methyl ester of formic acid	HCOOCH3	107-31-3	AX		MC	100	ppm
Methyl ester of isocyanic acid	CH3NCO	624-83-9	В	P3	MC	VLE=0,02	mg/m3
Methyl ethylene oxide	C3H60	75-56-9	AX 450	02	MC	100,00	ppm
Methyl parathion Methyl phosphite	(CH3O)2P(S)OC6H4NO2 (CH3O)3P	298-00-0 121-45-9	A2	P3	MC	0	mg/m3
Methyl propenoate	CH2=CHCOOCH3	96-33-3	A	P3	MC MC	10	ppm ppm
METHYL- t- BUTYL ETHER	C5 H12 O	1634-04-4	AX	P3	MC	25	ppm
Methylene oxide	HCHO	50-00-0	ABE	13	MC	0,50	ppm
Methylstyrene	CH2=CHC6H4CH3	25013-15-4	A		MC	100	ppm
Miak	CH3COCH2CH2CH(CH3)2	110-12-3	A		MC	50	ppm
Mibc	(CH3)2CHCH2CH(OH)CH3	108-11-2	A		MC	25	ppm
MMH	CH3NHNH2	60-34-4	AK	P3	MC	0,04	ppm
Molybdenum compounds (as mo)	Mo	7439-98-7		P3	MC	5	mg/m3
Monochloropentafluoroethane	CCIF2CF3	76-15-3			ARI or A AIR	1000,000	ppm
Monofluorotrichloromethane	CCI3F	75-69-4		D2	ARI or A AIR	1000	ppm
N- Butyl chloroformate N- propyl acetate	C5 H10 CL 02 CH3COOCH2CH2CH3	592-34-7 109-60-4	A A	P3	MC MC	1,00 200.00	ppm
N- propyr acetale N, n- dimethylaniline	C6H5N(CH3)2	121-69-7	A	P3	MC	5,00	ppm ppm
N,N'-Dimethyl-4,4'-bipyridinium dichloride	CH3(C5H4N)2CH3 • 2Cl	1910-42-5	A	P3	MC	0,10	mg/m3
Naphthalene	C10H8	91-20-3	A	P3	MC	10,00	ppm
Navadel®	C4H6O2[SPS(OC2H5)2]2	78-34-2	A	P3	MC	0,20	mg/m3
Neon	Ne	7440 01 9			ARI or A AIR		ppm
N-Ethylethanamine	(C2H5)2NH	109-89-7	K + 450		MC	10,00	ppm

 $This \ list is \ not \ contractual. \ It is \ an \ indicative \ list \ and \ in \ no \ way \ incurs \ the \ liability \ of \ DELTA \ PLUS.$

TECHNICAL INFORMATION

Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of neasurement
N-Ethylmorpholine	C6 H13 N O	100-74-3	A	P3	MC	5.00	ppm
Ng	CH2NO3CHNO3CH2NO3	55-63-0	A	P3	DM or MC	0,100	mg/m3
Nickel and inorganic compounds	Ni	7440-02-0		P3	DM or MC	1,000	mg/m3
Nickel carbonyl	Ni(CO)4	13463-39-3			ARI or A AIR	0.10 (ST)	ppm
Nicotine	C5H4NC4H7NCH3	54-11-5	A	P3	DM or MC	1	mg/m3
Nitrapyrin	CIC5H3NCCI3	1929-82-4	AB	P3	MC	5,00	mg/m3
Nitric oxide	N O	10102-43-9			ARI or A AIR	25	ppm
Nitrocarbol	CH3N02	75-52-5	A	P3	MC	100	ppm
Nitroethane	CH3CH2NO2	79-24-3	A	P3	MC	100	ppm
Nitrogen	N2 NF3	7727-37-9 7783-54-2			ARI or A AIR ARI or A AIR	10	ppm
Nitrogen trifluoride	CH3CH2CH2NO2	108-03-2	A	P3	MC MC	25	ppm
Nitropropane N-methylmethanamine	(CH3)2NH	124-40-3	K	P3	MC	10,00	ppm
NN- Dimethylethylamine	(CH3)ZNH C4 H11 N	598-56-1	K	P3	MC	5,00	ppm
N-Nitroso-N,N-dimethylamine	(CH3)2N2O	62-75-9	A	P3	MC	3,00	ppiii
N-octane	CH3[CH2]6CH3	111-65-9	A	1.5	MC	75,00	mg/m3
Nonyphenols	C15H240	25154-52-3	A	P3	MC	73,00	IIIg/III3
N-phenylmethylamine	C6H5NHCH3	100-61-8	A		DM or MC	1	ppm
N-Trichloromethylmercapto-4-cyclohexene 1,2-dicarboximide	C9H8Cl3NO2S	133-06-2	A	P3	DM or MC	5,000	mg/m3
Nux vomica	C21H22N2O2	57-24-9		P3	MC	0	mg/m3
O- acetylsalicylic acid	CH3COOC6H4COOH	50-78-2		P2/P3	DM or MC	5.00	mg/m3
0-anisidine	NH2C6H4OCH3	90-04-0	A	P3	MC	1	mg/m3
O-dianisidine	(NH2C6H3OCH3)2	119-90-4		P3	DM or MC		ľ
O-diphenylbenzene	C6H5C6H4C6H5	84-15-1		P3	DM or MC	1	ppm
Oil mist, mineral		8012-95-1		P3	MC	5	mg/m3
Oil of mirbane	C6H5NO2	98-95-3	A	P3	MC	1	ppm
O-nitrotoluene	NO2C6H4CH3	88-72-2	A	P3	MC	2,00	ppm
Ortho-dichlorobenzene	C6H4Cl2	95-50-1	A		MC	50,00	ppm
Orthophosphoric acid	H3PO4	7664-38-2	В	P3	MC	1.00 (ST)	mg/m3
O-sec-Butylphenol	CH3CH2CH(CH3)C6H4OH	89-72-5	A		MC	5,00	ppm
Osmium oxide	0s04	20816-12-0	В	P3	MC	0	mg/m3
Oxooctyl alcohol	C7H15CH2OH	26952-21-6	A		MC	50	ppm
Ozone	03	10028-15-6	AXB2	P3	MC	0	ppm
P - Aramid respirable fibres	(C14 H10 O2 N2) n	26125-61-1		P3	DM or MC	0.50	fibres/m
P- toluenesulphonyl chloride	C7 H7 S O2 CI	98-59-9	AB	P3	DM or MC	5.00 (ST)	mg/m3
Paracetamol	C8 H9 N O2	103-90-2		P3	DM or MC	10	mg/m3
P-Dioxane	C4H802	123-91-1	A	P3	MC	10,00	ppm
Pentachlorophosphorus	PCI5	10026-13-8	В	P3	MC	1,00	mg/m3
Pentane Perasatis asid	CH3[CH2]3CH3	109-66-0 79-21-0	AX AB	P3	MC	120	ppm
Peracetic acid Peroxide de 2-Butanone	C2H4O3 C8H16O4	1338-23-4	AB	P3	DM or MC MC	VLE=0.2	ppm
Phenyl phosphate	(C6H5O)3PO	115-86-6	A	P3	MC	VLE-0,2	ppm mg/m3
Phenylaniline	(C6H5)2NH	122-39-4	A	P3	MC	10,00	mg/m3
Phenylethylene	C6H5CH=CH2	100-42-5	A	1.0	MC	50,00	ppm
Phorate	(C2H5O)2P(S)SCH2SC2H5	298-02-2	A	P3	MC	0	mg/m3
Phosphorus oxychoride	POCI3	10025-87-3	В	P3	MC	0	ppm
Phosphorus pentasulphide	P2S5/P4S10	1314-80-3	B 450	P3	MC	1,00	mg/m3
Phosphorus pentoxide		1314-56-3	A	P3	DM or MC	2.00 (ST)	mg/m3
Phosphorus trichloride	PCI3	7719-12 2	B 450	P3	MC	0	ppm
Phosphorus, yellow	P4	7723-14-0			ARI or A AIR	0	mg/m3
Picloram (iso)	C6H3Cl3O2N2	1918-02-1	AB	P3	MC	5,00	mg/m3
Piperazine hydrochloride	C4H10N2 HCI	142-64-3		P3	MC	5.00	mg/m3
Piperidine	CH2(CH2)4NH	110-89-4	A		DM or MC	?	ppm
Platinum metal	Pt	7440 06 4		P2/P3	DM or MC	5	mg/m3
Polychlorinated biphenyl	C6H3Cl2C6H2Cl3	11097-69-1	AB	P3	MC	0,10	mg/m3
Polychlorinated biphenyls (pcb's)	C12 H(10- x) Clx	1336-36-3			ARI or A AIR	0,500	mg/m3
Potassium bromate	K Br 03	7789-01-2		P3	DM or MC		
Potassium hydroxide	КОН	1310-58-3		P3	MC	2.00 (ST)	mg/m3
P-quinone	OC6H4O	106-51-4	A	P3	MC	0,10	ppm
Primary isoamyl alcohol	(CH3)2CHCH2CH2OH	123-51-3	A		MC	100	ppm
Propranolol	C16 H21 N O2	525-66-6	A	P3	DM or MC	2	mg/m3
Propylene	C3 H6	115-07-1			ARI or A AIR		ppm
Propylene glycol	as Propane- 1,2- diol	57-55-6	A	P3	DM or MC	150	ppm
Propylene glycol-1,2-dinitrate	CH3CN020HCHN020H	6423-43-4	A	P3	MC	0	ppm
Pvc (polyvinyl chloride) (resp. Dust)	(C2 H3 CI) N	9002-86-2		P3	MC	4	mg/m3
Pyridine	C5H5N	110-86-1	A	P3	MC	5	ppm
Pyrophosphate	Na4P2O7	7722-88-5		P3	MC	5	mg/m3
Quartz	SiO2	14808-60-7		P3	DM or MC	0,050	mg/m3
RDX	C3H6N6O6	121-82-4		P3	DM or MC	1,500	mg/m3

Resource of month o	Substances	Chemical formula	CAS number	Gas filter	Particles filter	MC/DM*	OEL	Unit of measurement
Recentace (60)	Resorcinol	C6H4(OH)2	108-46-3	A	P3	MC	10	ppm
Secretory actates C1292011	Rhodium (as rh) metal fume and dust	Rh	7440-16-6		P2/P3	DM or MC	0	mg/m3
Seethys acetabre				A	_			
Seeleys was					P2/P3			
Selenium dihydride NB 25 cm 7783 807 5 L NB 80 x AM8 0 Typn Silica, seort (resp. Dust) 502 mg/m3 6507-86-0 L P3 MC 6,000 mg/m3 Silican (resp. Dust) 515 mg/m3 740 71-1 L P3 MC 4,000 mg/m3 Silican (resp. Dust) 515 mg/m3 740 71-1 L P3 MC 4,000 mg/m3 Silican (resp. Dust) 515 mg/m3 740 71-1 L P3 MC 4,000 mg/m3 Silican (resp. Dust) 515 mg/m3 MC 4 mg/m3 MC 5 mg/m3 Silican (resp. Dust) 150 mg/m3 MC 2 P3 MC 500 mg/m3 Sodium instructions 150 mg/m3 MC 2 P3 MC 500 mg/m3 Sodium instructions 55 mg/m3 751 mg/m3 MC 100 mg/m3 Solium instructions 55 mg/m3 751 mg/m3 MC 100 mg/m3 Solium instructions 55 mg/m3 751 mg/m3 MC<					D2	-		
Size, amosphoso (sep. Dust) SD2 R518-85-9 P3 MC 6,00 mg/m3 Silica, fued (sep. Dust) O.S.5 6578-85-6 - P3 MC 0 ng/m3 Silican (sep. Dust) Silican (sep. Dust) Silican (sep. Dust) - P3 MC 4 ng/m3 Silican (sep. Dust) Silican (sep. Dust) Silican (sep. Dust) - P3 MC 4 ng/m3 Silican (sep. Dust) Silican (sep. Dust) Silican (sep. Dust) Na/m3 783 (sep. Sep. Dust) MC 5 mg/m3 Silican (sep. Dust) Na/m3 383 (sep. Sep. Dust) MC 5 ng/m3 MC 5,00 mg/m3 Silicul (sep. Dust) Na/m3 <	· ·			A	P3			
Silica, flood (resp. Dars) GOS 19 666/16-86-0 P3 M.C. 0 mg/m3 Silicane Boach SHA 7889-875					D3		-	
Sikane SilHA 2803-855 N. N. Alle or ANR 50,000 ppmm Silcon (resp. Double) S. 7402-213 0. P3 DM C 4 mg/m3 Silcon menodacide S. 48 7442-224 0. P3 DM C 5,000 mg/m3 Solulum bidacide NaSH 13167-72 2. P3 MC 20.00 mg/m3 Solulum beabsulphite NaSSH STA 8. 8. 7. MC 20.00 mg/m3 Solulum meabsulphite NaSSH STA 8. 8. MC 20.00 mg/m3 Solulum condultrorectate FGECOON 5. 4. 8. M MC 20.00 mg/m3 Solulum soogokhoide SODC 778-977 8. 8. M MC 20.00 ppm Solulum soogokhoide SODC 778-977 8. 8. All or ARR 0. ppm Solulum soogokhoide SODC 788-977 8.	, , , ,						,	
Silton (resp. Dust) Silton menandride Silton menandride Silton menandride More MR 500 mg/m3 More MR </td <td></td> <td></td> <td></td> <td></td> <td>13</td> <td></td> <td></td> <td></td>					13			
Silcon monocardode SSC 409-21-2 L 83 DM or MC 5,000 mg/m3 Silver, mealic Ag 740-22-4 L P3 MC 0 mg/m3 Solum Insightine Na4503 783-19-5 L P3 MC 2.50 mg/m3 Solum Insightine Na2505 783-57-4 B M3 MC 5,00 mg/m3 Solum Installation FGCCODIA 62-74-8 L P3 DM of M 0 mg/m3 Solum Installation 556 255-64-4 E P3 DM of M 0 mg/m3 Solum Installation 550 255-64-4 E P3 MC 0 mg/m3 Solum Installation 550 278-98-8 E E B MC MC 0 ppm Solum Installation 574 A78-60-5 E E B P3 MC MC D ppm Solum Installation 574 A78-95-8					P3		,	
Sodium bioulphite NaHSG3 783 H985 LV P278 MC 5.5 mg/m3 Sodium mord/jurosceles NaCHOH 13107-72 LV P3 MC 200 mg/m3 mg/m3 Sodium mord/juroscelete FOIZCODIA 62-74-8 LV P3 DM or MC 0.0 mg/m3 Subitisions Bellisions 251-62-4 LV EV 23 MC 1000 mg/m3 Sulfurburdie SOZ2 774-69-5 E LW LV 1000 pg/m3 Sulfurb deratification SOZ2 774-69-5 E LW LV 200 pg/m3 Sulfurb deratification SOZ2 778-79-8 BE450 LW LW 500 pg/m3 Sulfurb didiuride SOZ52 299-79-8 BE450 LW LW 500 pg/m3 TCP (193504MH) 1400 LW AW 25 pg/m3 TCP (193504MH) 1400 LW 500 LW LW <td></td> <td>SiC</td> <td>409-21-2</td> <td></td> <td>P3</td> <td>DM or MC</td> <td>5,000</td> <td></td>		SiC	409-21-2		P3	DM or MC	5,000	
Sodium Inydrouside NAIOH 31807322 N. 673 M.C. 201507 mymmmods Sodium mordulororeste FCH2COOM 62-748 8 73 MC 500 mymmmods Subfillations Basilium souths 1395-21-7 - - ARM ARAR 0 mymmmods Subfillations 56 255-16-24 BE 73 MC 000 mymmmods Sulphur discused 502 7446-95-5 E - MC 2 pmm Sulphur discused 502 7446-95-6 E - MC 2 ppm Sulphur discused 502-7 778-26-7 B 73 MC 5.0 ppm Sulphur discused 502-7 798-78-8 BE-65 MC MC 5.0 ppm Sulphur discused 502-7 798-78-8 BE-65 MC MC 5.0 ppm Sulphur discused 601-6 708-78-0 MC MC 2.0 ppm	Silver, metallic	Ag	7440-22-4		P3	MC	0	mg/m3
Sodium meabsiaphite NA25QS 788157-K 8 8 73 MC 50,00 mg/m3 Sodium meabsiaphite 627-48 8 73 DM or MC 0 mg/m3 Solium funde 56 255-62-4 8 83 MMC 100 mg/m3 Sulfur funde 5002 774-89-7 8 83 MC 100 ppm Sulfur funde 5002 774-89-75 8 93 MC 200 ppm Sulfur decidioride 52F10 577-422-7 8 8 8 MC 200 ppm Sulfur didunde 502Pur 574-22-7 8 8 9 MC 50 9 MC 50 9 MC 50 9 MC 50 ppm ppm MC 50 ppm ppm MC 50 ppm p	Sodium bisulphite	NaHSO3	7631-90-5		P2/P3	MC	5	mg/m3
Sodium monofuluroacetate FCH2COON Sodium monofuluroacetate Sodium salitius satulitis Sodium sarveylininde Sodium satulitis Sodium s	Sodium hydroxide	NaOH	1310-73-2		P3	MC	2.00 (ST)	mg/m3
Subtilisions Bacillus subtilis 1395-21-7 V AB or ARR 0 mgm3 Sulfur fundred 566 255-62-4 EE P3 MC 1000 ppm Sulfur controlled 5002 7719-99-7 B P3 MC 1000 ppm Sulfur dioide 502 7746-95 E MC 0 0 ppm Sulphur diamode 544 7783-60 ARI or ARR 0 ppm Sulphur diamode 544 7783-60 ARI OR ARR 0 ppm Symbit distractive from CICH-GNCI 540-59-0 ARI OR ARR 0 ppm Total mind Ta 78-80 ARI OR ARR 0 ppm ppm ppm Total mind Ta 78-80 ARI OR ARRA ARI OR ARRA 0 ppm ppm Total mind CHEGRISTINO 2 588-84-9 ARE P3 MC VI. Equal Mind 100 ppm ppm ppm ppm ppm ppm ppm				В			,	
Sulfur fluoride S56 2551-62-4 BE P3 MC 1000 ppm Sulfurus oxpordinotide S002 774-69-95 B P3 MC 100 EDI) ppm Sulphur pertafiluoride S2F10 5714-27-7 B P3 MC 0.00 ppm Sulphur pertafiluoride S022 S99-78-8 BE-450 MC 5.0 ppm Sulphur diduoride S022 S99-78-8 BE-450 MC 2.0 ppm Ilarishum Ta 7740-25-7 P3 MC 2.0 ppm Ilarishum Ta 7740-25-7 P3 MC 0 ppm Ilarishum Ta 7740-25-7 P3 MC 0 ppm Ilarishum Ta Ta 783-88 A P3 MC 0 mg/m3 TCP (C145603MC0295)20 388-92-45 A8E P3 MC 0 mg/m3 Teldruim Buorde TE 3784-80-99					P3			
Sulfurous outprilation SOOQ2 7719-99-7 B P3 MC L0 (51) pgm Sulphur detailuoride SD20 7746-99-5 E MC Q2 ppm Sulphur petalluoride SP30 778-36-0 H ARI or ARR 0 ppm Sulphur petalluoride SD22 2699-79-8 BE 450 H MC 2000 ppm Sulphur petalluoride SD272 2699-79-8 BE 450 MC 5.5 ppm Sulphury diffuoride GCR-CHCIC 3699-90 AK MC 500,000 ppm Trick GCR-CHCIC 378-30-8 A P3 DM or MC 0 mg/m3 TCP (CHEKGHODYBE) 788-88-9 ARB MC VLE-DOI ppm TERA (CHEKGHODYBE) 129-78-3 MC N MC 0 mg/m3 Tellurium & compounds Te 1364-83-90 MC P3 MC 0 mg/m3 Tellurium & compounds								
Sulphur dinoide SO2 7446-99-5 E I MC 2 ppm Sulphur dendlorde SSFI0 5714-227 B P3 MC 0.01 ppm Sulphur dendlorde SSF2 7783-60-0 W All or AAR 0.01 ppm Sulphur dendlorde SSDF2 2699-79-8 BE450 MC 2000.0 ppm Sym-dichlorcethylene GCH-GHCI 540-59-0 AX P P3 MC 200.00 ppm Tor (CH36404)870 78-38-8 AR P3 MC VL=001 ppm Tor CH563NICU2 588-84-9 ABE P3 MC 0.0 mg/m3 Ted (CH563NICU2 388-84-9 ABE P3 MC 0.0 mg/m3 Ted (CH563NICU2 388-84-9 ABE P3 MC 0.0 mg/m3 Tellurium fuoride Te6 1344-84-9 P2,79 MC MC 0.0 mg/m3								
Sulphur petra/funcide SZF10 S714-22-7 B P3 MC 0,011 ppm Sulphur petra/funcide SF4 7783-90-9 C ARI OF ARR 0 ppm Sulphuryl diffuoride SO2F2 2699-79-8 BE 450 MC 50 ppm Tantalum Ta 7440-25-7 P3 MC 5 ppm TCP (H366H3)MO2D S84-84-9 AZB2 P3 MC 0 mg/m3 TEQ (H366H3)MO2D S84-84-9 AZB2 P3 MC 0 mg/m3 TEQ (CH55)SN 121-44-8 W MC 10,00 ppm Ted p (CH56)SN 121-44-8 W MC 10,00 ppm Teldurium fluoride Tef6 T3404-89-9 AP3 MC 0 mg/m3 Terta-buly sex or facetic aid CH3CCCQ2 127-18-4 A P3 MC 0 mg/m3 Terta-buly sex or facetic aid CH3CCCQ2 127-18-4 <	,				P3			
Sulphur tetarluoride SF4 7783-60-0 N ARI OR ARIR 0 ppm Sulphury diffuoride SD2P2 28997-98 BE-50 MC 5 ppm Sym-dichloroethylene CICHE-CHC 540-59-0 M MC 200,00 ppm TCP (CH3GH0)3PO 78-30-8 A P3 DM or MC 0 mg/m3 TCP (CH3GH0)3PO 78-30-8 A P3 DM or MC 0 mg/m3 TEA (CH2GH2)02PS)2D 388-84-9 AZD2 P3 MC 10.0 ppm TE4 or MAR (CH2GH2)02PS)2D 388-93-45 ABE P3 MC 0 mg/m3 Te4 or Lance (CH3CH2)02PO)2D 107-49-3 A P3 MC 0 mg/m3 Te1e dilumin & Compounds TE 13494-80-9 A P3 MC 0 mg/m3 Te1e dilumin & Compounds TE 1749-80-9 A P3 MC 0 mg/m3 Tetr					D2			
Suphary diffuoride				D	ro			
Sym-dichloreethylene CICH-ERCI \$40-59-0 AX V LOW 200,00 ppm Tarabam Ta 7440-25-7 A P3 MC 5 mg/m3 TCP (CHGHGHM)3PO 78-30-8 A P3 DM or MC 0 mg/m3 TID CHGGHR/DOLPS (20) 3889-45-3 ABE P3 MC 10.00 ppm TEGA (CHBCH20)2PS)2O 3889-45-3 ABE P3 MC 0 mg/m3 Tellurium Ruoride Tef 178-38-94-3 AB P3 MC 0 mg/m3 Tepp (so) [(GHGH20)2PO)2C0 107-49-3 A P3 MC 0 mg/m3 Terrachloreethylene CUC-CC2 127-18-4 A A MC 0 mg/m3 Terrachloreethylene CUC-CC2 127-18-4 A A MC 0 mg/m3 Terrachly silicate (CHBO)4Si 681-84-5 A P3 MC 0 mg/m3 <td></td> <td>-</td> <td></td> <td>BF 450</td> <td></td> <td></td> <td></td> <td></td>		-		BF 450				
Tantalum								
TCP (CH3C6H40)3PO 78-30-8 A P3 DM or MC 0 mg/m3 TDI CH3C6H3(NCO)2 S84-84-9 A282 P3 MC VLE-0,01 ppm TEA (CC2H5)3N 121-44-8 N MC 10,00 ppm Tedurium & compounds Te 13494-80-9 P.279-3 DM or MC 0 mg/m3 Tellurium fluoride Te66 7783-80-4 P.279-3 DM or MC 0 mg/m3 Teop (so) (ICH3CH2O)ZPO)2D 107-49-3 A P3 MC 0 mg/m3 Tert-Bulyl ester of areteix acid CR3C0C(CR3) 540-88-5 A P3 MC 0 mg/m3 Tert-Bulyl ester of areteix od CR450S0C(CR3) 78-10-4 A L MC 0 ppm Tetracethyl silicate CC2+65M5004 78-10-4 A L MC 1 ppm Tetracethyl silicate (CH3)XC(N)(CR)(CR)(CH3)2 3333-52-6 A P3 MC 0					P3		,	
TEA	TCP	(CH3C6H40)3PO	78-30-8	A	P3	DM or MC	0	
Telurium & compounds	TDI	CH3C6H3(NCO)2	584-84-9	A2B2	P3	MC	VLE=0,01	ppm
Telurium & compounds	TEA	(C2H5)3N	121-44-8			MC	10,00	ppm
Telfurlum fluoride	Tedp	[(CH3CH2O)2PS]20	3689-24-5	ABE	P3	MC	0	mg/m3
Tepro Tepr	Tellurium & compounds				P2/P3	DM or MC		mg/m3
Terrably Set of acetic acid CH3COOC(CH3)3 S40-88-5 A M DM or MC 200 ppm Tetrachloroethylene CIDC=CCI2 127-18-4 A MC 50,00 ppm Tetrachloroethylene CIDC=CCI2 127-18-4 A MC 50,00 ppm Tetramethyl silicate C(245)ASIO4 78-10-4 A MC 10 ppm Tetramethyl silicate C(463)ASI 681-84-5 A MC 1 ppm Tetramethyl succinodinitrile C(432)CC(NC(N)C(N)C(N)2) 333-52-6 A P3 DM or MC 1 ppm Thillium, soluble compounds (as ti) T1 7440-28-0 P3 DM or MC 200 ppm Thillium, soluble compounds (as ti) T1 7440-28-0 P3 DM or MC 200 ppm Thio-4,4" bis (ter-butyl-6m-crésol) (CH3(CH)C6H2C(CH3)312S 96-69-5 P3 DM or MC 5,000 mg/m3 Thiophenol C6H5SH 108-98-5 A MC 0 ppm Thinan (so) C6H12N254 137-28-8 A P MC 5 mg/m3 Tinanium peroxide TiO2 13463-67-7 P3 MC 2 mg/m3 Tinanium peroxide TiO2 13463-67-7 P3 MC 2 mg/m3 Tinanium peroxide C6H5CH3 108-83 A MC 100,000 ppm Tinbuyl ester of phosphoric acid CCGI3CO0H 76-03-9 B P3 MC 1 ppm Tirbuyl ester of phosphoric acid CCGI3CO0H 76-03-9 B P3 MC 1 ppm Tirbuyl ester of phosphoric acid CCGI3CO0H 76-03-9 B P3 MC 1 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 96-18-4 A MC 10,00 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 79-01-6 A PM MC 0,00 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 79-01-6 A PM MC 0,00 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 79-01-6 A PM MC 0,00 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 79-01-6 A PM MC 0,00 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 79-01-6 A PM MC 0,00 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 79-01-6 A PM MC 0,00 ppm Tirbuyl ester of phosphoric acid CCGICHCH2CI 79-01-6 A PM MC 0,00 ppm Tirbuyl ester of phosphoric acid CCGI								
Tetrachloroethylene					P3			
Tetramethyl silicate	*							
Tetramethyl silicate (CH3DyLSi) 681-84-5 A MC 1 ppm Tetramethyl sucinodinitrile (CH3)2C(CN)C(CN)(CH3)2 3333-52-6 A P3 DM or MC 1 ppm Thallium, soluble compounds (as til) TI 7440-28-0 P3 MC 0 mg/m3 Thio-4,4' bis (tert-butyl-6m-crésol) [CH3(OH)C6H2C(CH3)3]2S 96-69-5 P3 DM or MC 5,000 mg/m3 Thio-9henol C6H5SH 108-98-5 A MC 0 ppm Thiram (iso) C6H5SH 1137-26-8 A P MC 5 mg/m3 Tin compounds, inorganic, except snh4 (as sn) Tin TA40-31-5 P3 MC 4 mg/m3 Tinduim peroxide TiO2 13453-67-7 P3 MC 4 mg/m3 Tinduinum peroxide TiO2 13453-67-7 P3 MC 4 mg/m3 Tinduinum peroxide GCH5CH3 108-88-3 A P3 MC 100,00 ppm							-	
Trianium proxide (CH3)2C(CN)(CN)(CH3)2 3335-52-6 A P3 DM or MC 1 ppm Thallium, soluble compounds (as til) T1 7440-28-0 P3 MC 0 mg/m3 This public compounds (as til) T1 7440-28-0 P3 MC 0 mg/m3 This public compounds (as til) T1 7440-28-0 P3 MC 0 mg/m3 This public (CH3)4/bis (tert-butyl-6m-crésol) [CH3(CH3)6H2C(CH3)3]2S 96-69-5 P3 DM or MC 5,000 mg/m3 This public (EH5SH 108-98-5 A MC 0 ppm This m(so) C6H12N2S4 137-26-8 A P MC 5 mg/m3 This mompounds, inorganic, except snh4 (as sn) Sn 7440-31-5 P3 MC 2 mg/m3 This num peroxide T102 13463-67-7 P3 MC 4 mg/m3 TMA (CH3)3N 75-50-3 K MC 10 ppm Tributyl ester of phosphoric acid (CH3(CH2)30)3PO 126-73-8 A P3 MC 100,00 ppm Tributyl ester of phosphoric acid (CH3(CH2)30)3PO 126-73-8 A P3 MC 1,000 ppm Tributyl ester of phosphoric acid CCI3COOH 76-03-9 B P3 MC 1 ppm Trichlorothydrin CH2CICHICH2CI 96-18-4 A MC 10,00 ppm Trichlorothydrin CH2CICHICH2CI 76-18-4 A MC 10,00 ppm Trimethyl carbinol CH3GH2(ND2)3 T18-96-7 A P3 MC 5,00 mg/m3 Trimethyl carbinol CH3GH2(ND2)3 T18-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Tungsten & compounds, natural, soluble (as u) U 7440-61-1 P3 MC 0 mg/m3 Tungsten & compounds, natural, soluble (as u) U 7440-61-1 P3 MC 0 mg/m3 MC 1 mg/m3 M	· · · · · · · · · · · · · · · · · · ·							
Thalilum, soluble compounds (as ti) TI 7440-28-0 C4H800 109-99-9 A MC 200 ppm Thio-4,4* bis (tert-buyl-6m-crésol) [CH3(OH)C6H2C(CH3)3]2S 96-69-5 P3 DM or MC 5,000 mg/m3 Thiophenol C6H5SH 108-98-5 A P MC 0 ppm Thiram (iso) C6H12N2S4 137-26-8 A P MC 0 ppm Tilanium peroxide TiO2 13463-67-7 P3 MC 10 ppm Tilanium peroxide TiO2 13463-67-7 P3 MC 10 ppm Toluene C6H5CH3 108-88-3 A MC 10 ppm Tributyl ester of phosphoric acid (CH3(CH2)303PO 126-73-8 A P3 MC 1 mg/m3 Trichloroethanoic acid CCI3COOH Trichloroethanoic acid CCI3COH Trichloroethanoic acid CCI3COH Trichloroethanoic acid CCI3COH Trichloroethanoic acid CCI4COH Trichloroethanoic acid Trichloroethanoic acid CCI4COH Trichloroethanoic acid CCI4COH Trichloroethanoic acid CCI4COH Trichloroethanoic acid					ρş	-		
This	,							
Thio-4.4' bis (tert-butyl-6m-crésol)				A	.,			
Thiram (iso) CGH12N2S4 137-26-8 A P MC S mg/m3	Thio-4,4' bis (tert-butyl-6m-crésol)	[CH3(OH)C6H2C(CH3)3]2S	96-69-5		P3	DM or MC	5,000	
Tincompounds, inorganic, except snh4 (as sn)	Thiophenol	C6H5SH	108-98-5	A		MC	0	ppm
Titanium peroxide TiO2 13463-67-7 (CH3)3N P3 MC 4 mg/m3 TIMA (CH3)3N 75-50-3 K MC 10 ppm Toluene C6H5CH3 108-88-3 A A MC 100,00 ppm Tributyl ester of phosphoric acid (CH3CCH2I3O)3PO 126-73-8 A A P3 MC 2,50 mg/m3 Trichloroethanoic acid CCI3CO0H 76-03-9 B B P3 MC 1 ppm Trichloroethydrin CH2CICHCH2CQ 96-18-4 A A MC 10,00 ppm Tricycloryl isocyanurate (tgic) C12 H15 N3 06 2451-62-9 AB P3 DM or MC VLE mg/m3 Trinicomethane CH3 75-47-8 A A MC 0,60 ppm Triniene CCH+CCL2 79-01-6 A A MC 75,00 ppm Trimethyl carbinol CH33CQND 75-65-0 A A MC 100 ppm Triniurotoluol CH3CAQ203 118-96-7 A P3 MC 1 mg/m3 Turgesten & compounds (as w) (soluble) W 7440-33-7 P3 P3 MC MC 10 mg/m3 Voc CH2-CHOCCH3 108-05-4 A MC 10 mg/m3 <t< td=""><td>Thiram (iso)</td><td>C6H12N2S4</td><td>137-26-8</td><td>A</td><td>Р</td><td>MC</td><td>5</td><td>mg/m3</td></t<>	Thiram (iso)	C6H12N2S4	137-26-8	A	Р	MC	5	mg/m3
TIMA (CH3)3N 75-50-3 K MC 10 ppm Toluene C6H5CH3 108-88-3 A MC 100,00 ppm Tributyl ester of phosphoric acid (CH3(CH2)30)3PO 126-73-8 A P3 MC 2,50 mg/m3 Trichloroebhanoic acid CCI3COOH 76-03-9 B P3 MC 1 ppm Trichlorohydrin CH2CICHCICH2CI 96-18-4 A MC 10,00 ppm Tricyclohexyltin hydroxide (CGH11)3SnOH 13121-70-5 A P3 MC 5,00 mg/m3 Triodomethane CH3 75-47-8 A MC 0,60 ppm Trinetoryl carbinol CH3CGH2(N2)3 118-96-7 A MC 100 ppm Trimethyl carbinol CH3CGH2(N02)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Vac CH2-CHO	Tin compounds, inorganic, except snh4 (as sn)	Sn	7440-31-5		P3	MC	2	mg/m3
Toluene C6H5CH3 108-88-3 A MC 100,00 ppm Tributyl ester of phosphoric acid (CH3[CH2]30)3PO 126-73-8 A P3 MC 2,50 mg/m3 Trichlorobydrin CCI3COOH 76-03-9 B P3 MC 1 ppm Trichlorohydrin CH2CICHCICH2CI 96-18-4 A MC 10,00 ppm Tricyclohexyltin hydroxide (C6H11)3SnOH 13121-70-5 A P3 MC 5,00 mg/m3 Trijdomethane C12 H15 N3 06 2451-62-9 AB P3 DM or MC VLE mg/m3 Triidomethane CHI3 75-47-8 A MC 0,60 ppm Trimene CICH=CCI2 79-01-6 A MC 100 ppm Trimethyl carbinol CH3C6H2(N02)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Vac	Titanium peroxide	TiO2	13463-67-7		P3	MC	4	mg/m3
Tributyl ester of phosphoricacid (CH3(CH2)30)3PO 126-73-8 A P3 MC 2,50 mg/m3 Trichloroethanoic acid CCI3COOH 76-03-9 B P3 MC 1 ppm Trichlorohydrin CH2CICHCICH2CI 96-18-4 A MC 10,00 ppm Tricylcohexyltin hydroxide (C6H11)3SnOH 13121-70-5 A P3 MC 5,00 mg/m3 Trijdodmethane C12 H15 N3 O6 2451-62-9 AB P3 DM or MC VLE mg/m3 Triidodomethane CHI3 75-47-8 A MC 0,60 ppm Triidodomethane CICH-CCI2 79-01-6 A MC 75,00 ppm Timele CICH-CCI2 79-01-6 A MC 100 ppm Timele Line CICH-CCI2 79-01-6 A MC 100 ppm Timele Line Scottilla Carbinol CH33COH 75-65-0 A MC 100 ppm Timele Line Scottilla C						MC		ppm
Trichloroethanoic acid CCI3COOH 76-03-9 B P3 MC 1 ppm Trichlorohydrin CH2CICHCICH2CI 96-18-4 A MC 10,00 ppm Tricylcohevyltin hydroxide (C6H11)3SnOH 13121-70-5 A P3 MC 5,00 mg/m3 Triglycidyl isocyanurate (tgic) C12 H15 N3 O6 2451-62-9 AB P3 DM or MC VLE mg/m3 Triodomethane CHI3 75-47-8 A MC 0,60 ppm Trinlene CICH-CCI2 79-01-6 A MC 75,00 ppm Trimethyl carbinol CH3C6H2(NO2)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Turgeten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Vac CH2-ECHOCCH3 108-05-4 A MC 100 ppm Vac								
Trichlorohydrin CH2CICHCICH2CI 96-18-4 A MC 10,00 ppm Tricyclohexyltin hydroxide (C6H11)3SnOH 13121-70-5 A P3 MC 5,00 mg/m3 Triglycidyl isocyanurate (tgic) C12 H15 N3 O6 2451-62-9 AB P3 DM or MC VLE mg/m3 Triiodomethane CHI3 75-47-8 A MC 0,60 ppm Trillene CICH-CCI2 79-01-6 A MC 75,00 ppm Trimitrotoluol CH36CH2(NO2)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Turgentine C10 H16 (approx) 8006-64-2 A MC 100 ppm Vac CH2-CH00CCH3 108-05-4 A MC 100 mg/m3 VoC CH2-CCI 75-35-4 AX P3 MC VLE ppm Warfarin (iso) C19H160								
Tricyclohevy/tin hydroxide (C6H11)3SnOH 13121-70-5 A P3 MC 5,00 mg/m3 Triglycidyl isocyanurate (tgic) C12 H15 N3 O6 2451-62-9 AB P3 DM or MC VLE mg/m3 Triiodomethane CHI3 75-47-8 A MC 0,60 ppm Triiodomethane CICH-CCI2 79-01-6 A MC 75,00 ppm Trimethyl carbinol (CH3)3C0H 75-65-0 A MC 100 ppm Tiniptrofulul CH3C6H2(N02)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Turpentine C10 H16 (approx) 8006-64-2 A MC 100 ppm Vac CH2-CH00CCH3 108-05-4 A MC 100 mg/m3 Vac CH2-CH00CCH3 108-05-4 A MC VLE ppm Warrain (iso) C19H1604					P3			
Triglycidyl isocyanurate (tgic) C12 H15 N3 06 2451-62-9 AB P3 DM or MC VLE mg/m3 Trilodomethane CH3 75-47-8 A MC 0,60 ppm Trilodomethane CICH-CCI2 79-01-6 A MC 75,00 ppm Trimethyl carbinol (CH3)3COH 75-65-0 A MC 100 ppm Trinitrotoluol CH3C6H2(N02)3 118-96-7 A P3 MC 1 mg/m3 Turgentne C10 H16 (approx) 800-64-2 A MC 100 ppm Uranium compounds, natural, soluble (as u) U 7440-61-1 P3 MC 0 mg/m3 Vac CH2-CH00CCH3 108-05-4 A MC VLE-4 ppm VDC CH2-CCI 75-35-4 AX P3 MC VLE ppm Warrain (iso) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/a 805-241-3	,				D2			
Triodomethane CHI3 75-47-8 A MC 0,60 ppm Trilene CICH-CCI2 79-01-6 A MC 75,00 ppm Trimetryl carbinol (CH3)3COH 75-65-0 A MC 100 ppm Trimetryl carbinol CH3C6H2(NO2)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Turpentine C10 H16 (approx) 806-64-2 A MC 100 ppm Vac CH2-CH00CCH3 108-05-4 A MC 0 mg/m3 Vac CH2-CCI 75-35-4 AX P3 MC VLE ppm Warrain (iso) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/a 8052-41-3 A MC 350,00 mg/m3 Vy- BHC (iso) C6H6CI6 58-89-9 B P3 MC								
Trilene CICH=CCI2 79-01-6 A MC 75,00 ppm Trimethyl carbinol (CH3)3COH 75-65-0 A MC 100 ppm Trinitrotoluol CH3C6H2(NO2)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Turpentine C10 H16 (approx) 8006-64-2 A MC 100 ppm Uranium compounds, natural, soluble (as u) U 7440-61-1 P3 MC 0 mg/m3 Vac CH2=CHOOCCH3 108-05-4 A MC VLE-4 ppm VDC CH2=CCI 75-35-4 AX P3 MC VLE ppm Warfarin (so) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/a 8052-41-3 A MC 350,00 mg/m3 Y-BLC (so) C6H6CI6 58-89-9 B P3 MC<					13			
Trimethyl carbinol (CH3)3COH 75-65-0 A MC 100 ppm Trinitrotoluol CH3C6H2(NO2)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Turpentine C10 H16 (approx) 8006-64-2 A MC 100 ppm Uranium compounds, natural, soluble (as u) U 7440-61-1 P3 MC 0 mg/m3 Vac CH2=CHOOCCH3 108-05-4 A MC VLE 4 ppm VDC CH2=CCI 75-35-4 AX P3 MC VLE 4 ppm Warfarin (so) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/a 8052-41-3 A MC 350,00 mg/m3 Xylene (all isomers) C8H10 1330-20-7 A MC 100 ppm Y-BLC (so) C6H6Cl6 58-89-9 B								
Trinitrotoluol CH3C6H2(NO2)3 118-96-7 A P3 MC 1 mg/m3 Tungsten & compounds (as w) (soluble) W 7440-33-7 P3 MC 1 mg/m3 Turpentine C10 H16 (approx) 8006-64-2 A MC 100 ppm Uranium compounds, natural, soluble (as u) U 7440-61-1 P3 MC 0 mg/m3 Vàc CH2=CH0OCCH3 108-05-4 A MC VLE -4 ppm VDC CH2=CCI 75-35-4 AX P3 MC VLE -4 ppm Warfarin (so) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/a 8052-41-3 A MC 350,00 mg/m3 Xylene (all isomers) C8H10 1330-20-7 A MC 100 ppm Y-BLC (so) C6H6Cl6 58-89-9 B P3 MC 1 mg/m3 Yttrium Y 7440-65-5 P3								
Turpentine C10 H16 (approx) 8006-64-2 / 7440-61-1 A MC 100 ppm Uranium compounds, natural, soluble (as u) U 7440-61-1 P3 MC 0 mg/m3 Vac CH2=CH00CCH3 108-05-4 A MC VLE-4 ppm VDC CH2=CCI 75-35-4 AX P3 MC VLE ppm Warfarin (so) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/ a 8052-41-3 A MC 350,00 mg/m3 Xylene (all isomers) C8H10 1330-20-7 A MC 100 ppm Y- BHC (iso) C6H6CI6 58-89-9 B P3 MC 1 mg/m3 Yitrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnC12 7646-85-7 P3 MC 1 mg/m3 Zinc coxide fume ZnO 1314-13-2 P3 DM or MC				A	P3	MC	1	
Uranium compounds, natural, soluble (as u) U 7440-61-1 (Magnetic Propose) P3 MC 0 mg/m3 Vac CH2=CH00CCH3 108-05-4 (Magnetic Propose) A MC VLE 4 ppm VDC CH2=CCI 75-35-4 (Magnetic Propose) AX P3 MC VLE 9pm Warfarin (so) C19H1604 (Magnetic Propose) 81-81-2 (Magnetic Propose) P2/P3 (Magnetic Propose) DM or MC 0 (Magnetic Propose) mg/m3 Xylene (all isomers) C8H10 (Magnetic Propose) 1330-20-7 (Magnetic Propose) A (Magnetic Propose) MC 100 (Magnetic Propose) pmg/m3 Yttrium Y 7440-65-5 (Magnetic Propose) P3 (MC 1 (Magnetic Propose) MC 1 (Magnetic Propose) mg/m3 Zinc chloride, fume Zn(C18H3502)2 (Magnetic Propose) 57-05-1 (Magnetic Propose) P3 (MC 5,00 (Magnetic Propose) Magnetic Propose <	Tungsten & compounds (as w) (soluble)	W	7440-33-7		P3	MC	1	mg/m3
Vac CH2=CH0OCCH3 108-05-4 A MC VLE -4 ppm VDC CH2=CCI 75-35-4 AX P3 MC VLE -4 ppm Warfarin (iso) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/a 8052-41-3 A MC 350,00 mg/m3 Xylene (all isomers) C8H10 1330-20-7 A MC 100 ppm Y-BHC (iso) C6H6Cl6 58-89-9 B P3 MC 1 mg/m3 Yitrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnC12 7646-85-7 P3 MC 1 mg/m3 Zinc coxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3	Turpentine	C10 H16 (approx)	8006-64-2	A		MC	100	ppm
VDC CH2=CCI 75-35-4 AX P3 MC VLE ppm Warfarin (iso) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n/a 8052-41-3 A MC 350,00 mg/m3 Xylene (all isomers) C8H10 1330-20-7 A MC 100 ppm Y-BHC (iso) C6H6Cl6 58-89-9 B P3 MC 1 mg/m3 Yttrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnCL2 7646-85-7 P3 MC 1 mg/m3 Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3	Uranium compounds, natural, soluble (as u)	U	7440-61-1		P3	MC	0	mg/m3
Warfarin (iso) C19H1604 81-81-2 P2/P3 DM or MC 0 mg/m3 White spirit n./ a 8052-41-3 A MC 350,00 mg/m3 Xylene (all isomers) C8H10 1330-20-7 A MC 100 ppm Y- BHC (iso) C6H6Cl6 58-89-9 B P3 MC 1 mg/m3 Yitrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnC12 7646-85-7 P3 MC 1 mg/m3 Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3				A				ppm
White spirit n/ a 8052-41-3 A A MC 350,00 mg/m3 Xylene (all isomers) C8H10 1330-20-7 A A MC 100 ppm Y- BHC (iso) C6H6Cl6 58-89-9 B B P3 MC 1 mg/m3 Yttrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnCL2 7646-85-7 P3 MC 1 mg/m3 Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 MC 5 mg/m3				AX				
Xylene (all isomers) C8H10 1330-20-7 A MC 100 ppm Y- BHC (iso) C6H6Cl6 58-89-9 B P3 MC 1 mg/m3 Yttrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnCL2 7646-85-7 P3 MC 1 mg/m3 Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3					P2/P3			
Y- BHC (50) C6H6CI6 58-89-9 B P3 MC 1 mg/m3 Yttrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnCI2 7646-85-7 P3 MC 1 mg/m3 Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3								
Yttrium Y 7440-65-5 P3 MC 1 mg/m3 Zinc chloride, fume ZnCl2 7646-85-7 P3 MC 1 mg/m3 Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3					nn			
Zinc chloride, fume ZnCl2 7646-85-7 P3 MC 1 mg/m3 Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3				R				
Zinc distearate (resp. Dust) Zn(C18H3502)2 557-05-1 P3 MC 5,00 mg/m3 Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3								
Zinc oxide fume ZnO 1314-13-2 P3 DM or MC 5 mg/m3								

*MC/DM = Overall masks / Half-mask

CHECK YOUR SIZE:

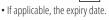
Place your hand as shown on the drawing, with the green line between the thumb and the index finger.

Read your size to the right of your hand. 06 08 09 10 11 XS LG MD XL **2X**

THE EUROPEAN STANDARDS **EN ISO 21420 GENERAL REQUIREMENTS**

The reference standard, cannot be used alone, but only in combination with another standard containing protection performance requirements.

- Conform to harmlessness (pH, chrome VI levels, etc...).
- Conform to the size charts (see chart on below).
- · Assess the dexterity, breathability, and comfort.
- Conform to the labelling, information and identification instructions.


SIZES AS PER STANDARD EN ISO 21420						
Glove size	Palm circumference (mm)	Length (mm)				
6	152	160				
7	178	171				
8	203	182				
9	229	192				
10	254	204				
11	279	215				
12	304	226				

STANDARDISED LABELING/IDENTIFICATION

Each protective glove is clearly identified by a Standardised label, containing the following elements:

- · Our brand logo;
- The product reference or the trade name;
- · The size;
- An information tag indicating that instructions are available for the product;
- The Standardised pictogram(s) with their performance ratings.

EN511 COLD RISK

The EN511 standard defines the requirements and test methods for cold protection gloves from cold transmitted by convection or conduction down to -30°C (optionally up to -50°C). This cold can be from climatic conditions or industrial activity.

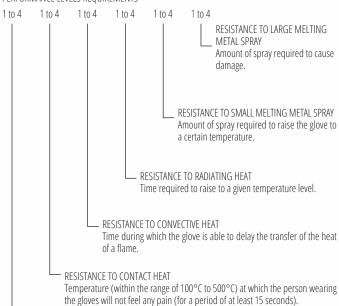
The selection process of a cold protection glove must take into account several parameters such as the ambient temperature, the health of the person, the duration of exposure, and the level of activities...

PERFORMANCE LEVELS REQUIREMENTS

1 to 4 1 to 4 _ IMPERMEABILITY TO WATER

> RESISTANCE TO CONTACT COLD Measurement of the thermal insulation of the palm of a glove with respect to contact with an object of low temperature

RESISTANCE TO CONVECTIVE COLD


Measurement of the thermal insulation of a glove with respect to an ambient atmosphere.

PERFORMANCE LEVEL	INTENSE	AVERAGE ACTIVITY	SLOW ACTIVITY
1	-10°C ≤ T < 0°C		
2	-30°C < T	0°C ≤ T < 10°C	
3		-15°C < T	5°C < T
4		-30°C < T	-10°C < T

The EN407 standard specifies the test methods, the general requirements, the thermal performance and the labelling of gloves and cuffs to protect from heat and fire. It applies to all gloves which must protect hands from heat and/or flames in any one or several of the following forms: fire, contact heat, convective heat, radiating heat, small spray of molten metal or large spray of melting metal.

PERFORMANCE LEVELS REQUIREMENTS

RESISTANCE TO FLAMMABILITY

Time during which the material remains lighted and continues to be consumed after the ignition source has been eliminated.

If the product claims flammability resistance, the pictogram will be

If the product does not claim any resistance to flammability (0 or X), the pictogram will be

PERFORMANCE LEVEL	CONTACT TEMPERATURE °C	THRESHOLD TIME (second)
1	100° C	≥ 15 s
2	250° C	≥ 15 s
3	350° C	≥ 15 s
4	500° C	≥ 15 s

^{*} the performance of all test points will be limited to 2 instead of 4.

Standard EN16350 provides additional requirements for protective gloves that are worn in areas where flammable or explosive areas exist or might be present.

Further electrostatic properties can be determined through EN1149-1 (surface electrostatic properties) or EN1149-3 (charge decay), but cannot be used for electrostatic dissipative protective

EN12477 **WELDERS RISK**

Requirements and test methods for gloves used for manual welding of metals, for cutting and related techniques. Welder gloves are ranked in two types: B when great dexterity is required (e.g.: TIG welding), and A for other welding processes.

EN ISO 374-1 AGAINST THE RISKS OF MICROORGANISMS & CHEMICAL RISKS

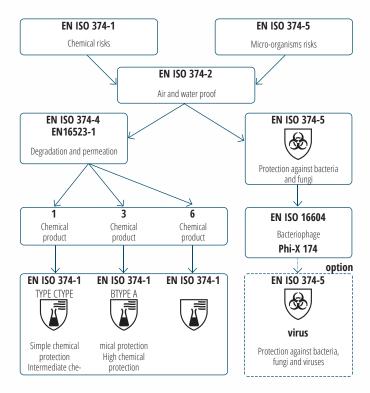
Standard EN ISO374-1, protective gloves against chemicals and micro-organisms, specifies the performance requirements required for gloves for protecting users against chemical products and/or micro organisms and defines the terms to be used:

- **Penetration** (tested as per standard EN374-2): Diffusion of water or air, to check the impermeability, on a non-molecular level, of a chemical product and/or micro-organism through the porosities, seams, micro-holes or other imperfections present in the material of the protective glove.
- **Degradation** (tested as per standard EN374-4): Determination of the physical resistance of materials to degradation after continuous contact with hazardous chemicals.
- **Permeation** (tested as per standard EN374-3 or EN16523): Process by which a chemical product diffuses through the material of a protective glove, by continuous contact, on a molecular level. The EN ISO version of standard 374-1, introduces the concept of three types of protection against the permeation of chemicals:
- Type A: The glove gives a performance index to permeation at least equal to 2 for 6 chemical test substances taken from the list of chemicals specified in the standard.
- Type B: The glove gives a performance index to permeation at least equal to 2 for 3 chemical test substances taken from the list of chemicals specified in the standard.
- Type C: The glove gives a performance index to permeation at least equal to 1 for 1 chemical test substances taken from the list of chemicals specified in the standard.

CODE LETTER	CHEMICAL PRODUCT	CAS number
А	Methanol	67-56-1
В	Acetone	67-64-1
C	Acetonitrile	75-05-8
D	Dichloromethane	75-09-2
Е	Carbon disulfide	75-15-0
F	Toluene	108-88-3
G	Diethylamine	109-89-7
Н	Tetrahydrofurane	109-99-9
I	Ethyl acetate	141-78-6
J	n-Heptane	142-82-5
K	Caustic soda 40 % (NaOH or sodium hydroxide	1310-73-2
L	Sulphuric acid 96 %	7664-93-9
М	Nitric acid 65%	7697-37-2
N	Acetic acid 99%	64-19-7
0	Ammonium hydroxide 25%	1336-21-6
Р	Hydrogen peroxide 30%	7722-84-1
S	Hydrofluoric acid 40%	7664-39-3
T	Formaldehyde 37%	50-00-0

PASSAGE TIME MEASURED (MN)	PERFORMANCE INDEX TO PERMEATION
> 10 mn	1
> 30 mn	2
> 60 mn	3
> 120 mn	4
> 240 mn	5
> 480 mn	6

EN ISO 374-5 AGAINST THE DANGERS OF MICRO-ORGANISMS


EN ISO 374-5 specifies the requirements and test methods for protective gloves intended to protect the user against microorganisms (mold and bacteria, potentially viruses).

Penetration of molds and bacteria (tested according to EN374-2): Test by which the water and airtightness of a glove is checked.

Penetration of viruses (tested according to method B of ISO 16604): Process that determines the resistance to penetration by blood-borne pathogens.

- Test method using Phi-X174 bacteriophage.

The glove, depending on its type, will bear the following pictogram:

Examples of application:

The field of use is decisive because, depending on the case, the glove may have to combine several properties in order to meet the necessary protection requirements. It is therefore very important to refer to the recommended areas of use and the results of the laboratory tests found in the instructions for use. However, it is recommended to check that the gloves are suitable for the intended purpose by carrying out tests beforehand, because the conditions at the workplace may differ from those of the standard test, depending on the temperature, abrasion and degradation.

ISO 18889 AGAINST PESTICIDE RISKS

Standard ISO 18889 specifies the performance requirements of protective gloves for pesticide operators and re-entry workers.

- **G1** gloves are suitable when the potential risk is relatively low. These gloves are not suitable for use with concentrated pesticide formulations and/or for scenarios where mechanical risks exist. G1 gloves are typically single use gloves.
- **G2** gloves are suitable when the potential risk is higher. These gloves are suitable for use with diluted as well as concentrated pesticides. G2 gloves also meet the minimum mechanical resistance requirements and are therefore suitable for activities that require gloves with minimum mechanical strength
- **GR** gloves provide protection only to the palm-side of the hand for a re-entry worker who is in contact with dry and partially dry pesticide residues that remain on the plant surface after pesticide application.

EN421 AGAINST IONISING RADIATION AND RADIOACTIVE CONTAMINATION

This standard provides requirements for protective gloves that are worn in an environment producing ionising radiation or in an environment containing radioactive substances.

A glove protecting against radioactive contamination must be waterproof according to EN374-2.

A glove that protects against ionising radiation must, in addition to being waterproof according to EN374-2, contain a certain amount of heavy metal such as lead.

EN388 ISO 23 388 MECHANICAL RISKS

The EN388 standard applies to all types of protective gloves with respect to physical and mechanical aggression from abrasion, cutting from slicing, perforation and tearing. Since the 2016 version of the standard, new optional performance have appeared.

PERFORMANCE LEVELS REQUIREMENTS 1 to 4 1 to 5 A to F 1 to 4 1 to 4 ø or P RESISTANCE IMPACT ON THE METACARPAL AREA Minimum attenuation of the impact force transmitted to the hand RESISTANCE TO CUTTING BY BLADE Force necessary for a straight blade to cut the sample on a movement of 20 mm. RESISTANCE TO PERFORATION Force required to pierce the sample with a standardized punch. RESISTANCE TO TEARING Maximum force required to tear the sample. RESISTANCE TO CUTTING WITH A BLADE Number of cycles required with a circular blade to cut the sample at constant speed.

ABRASION RESISTANCE

Number of cycles required to damage the sample at constant speed.

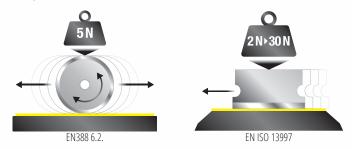
TEST	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5
Abrasion resistance (Number of cycles)	100	500	2 000	8 000	-
Blade cutting resistance (index)	1,2	2,5	5,0	10,0	20
Tear resistance (N)	10	25	50	75	-
Puncture resistance (N)	20	60	100	150	-

Impact resistance on the metacarpal area: if this performance is claimed, the "P" mark appears.

Marking example:

Weight (g)	LEVEL A	LEVEL B	LEVEL C	LEVEL D	LEVEL E	LEVEL F
Applied force (N)	2	5	10	15	22	30

Marking example:



4543**D** ou 4X43**D**

Coupure par lame, 2 méthodes de tests :

EN388 6.2.: Pour les risques de coupure faibles à moyens. Une lame circulaire sur laquelle une force constante de 5N est appliquée, se déplace d'avant en arrière jusqu'à ce que l'échantillon soit coupé. On mesure le nombre de cycles effectués et on lui attribue le niveau correspondant.

EN ISO 13997: Pour les matériaux qui émoussent la lame pendant le test EN388 6.2 et/ou particulièrement résistants, pour les risques de coupure élevés. Une lame droite effectue un déplacement unique sur 20 mm avec une force de 2N, le test est renouvelé avec une force différente autant de fois que nécessaire jusqu'à ce que l'échantillon soit coupé. Un niveau correspondant à la force nécessaire à couper l'échantillon est attribué. Cette méthode représente davantage les situations d'utilisation présentant un risque élevé de coupure.

ANSI ISEA (US American National Standards Institute) 105 Classification and specifications for the protection of the hand. Part 5.11. cut resistance Weight necessary for a straight blade to cut the sample in a single movement.

Weight (g)	≥ 200	≥ 500	≥ 1000	≥ 1500	≥ 2200	≥ 3000	≥ 4000	≥ 5000	≥ 6000
2011 version - levels	1	2	3	4	5	-	-	-	-
Version 2016 - niveaux	A1	A2	A3	A4	A5	A6	A7	A8	A9

Standard **EN ISO 10819** specifies performance requirements for vibration attenuation through gloves. The vibration-reducing material must also satisfy thickness and consistency requirements. It should be noted that these gloves can reduce but not eliminate health risks associated with hand-transmitted vibration exposure. Vibration transmissibility in one-third-octave frequency bands from 25 to 200Hz must be equal to or less than 0.90. The one calculated in one-third-octave frequency bands from 200 to 1250 Hz must be equal to or less than 0.60.

CHEMICAL RESISTANCE TABLE

This table provides only general information. Be careful! Glove resistance is influenced by other factors such as temperature, chemical product concentration, thickness, immersion time, and others. For specific use conditions, we recommend testing the glove prior to use.

http://gloves.deltaplus.eu

97-37-2 447-01-0 10-00-0 164-39-3 102-71-6 14-18-6 15-07-0 17-64-1 131-61-8 1361-29-2 1125-02-9 11-41-0 102-53-3 100-52-7 11-43-2 100-51-6 178-50-9 123-86-4 11-36-3 102-54-4 104-36-52-4 105-62-0 1124-37-5 16-23-5				
60-00-0 664-39-3 02-71-6 64-18-6 65-07-0 67-64-1 31-61-8 361-29-2 125-02-9 11-41-0 62-53-3 00-52-7 11-43-2 00-51-6 178-50-9 23-86-4 11-36-3 62-54-4 0043-52-4 105-62-0 1124-37-5				
664-39-3 02-71-6 64-18-6 75-07-0 67-64-1 31-61-8 361-29-2 125-02-9 71-41-0 62-53-3 00-52-7 71-43-2 00-51-6 778-50-9 23-86-4 71-36-3 62-54-4 043-52-4 105-62-0 124-37-5				
02-71-6 i4-18-6 i5-07-0 i7-64-1 31-61-8 361-29-2 125-02-9 i1-41-0 i2-53-3 00-52-7 i1-43-2 00-51-6 i78-50-9 23-86-4 i1-36-3 i2-54-4 0043-52-4 i005-62-0 124-37-5				
24-18-6 25-07-0 37-64-1 31-61-8 361-29-2 1125-02-9 11-41-0 32-53-3 00-52-7 11-43-2 00-51-6 178-50-9 23-86-4 11-36-3 32-54-4 004-52-4 105-62-0 1124-37-5				
25-07-0 17-64-1 181-61-8 1361-29-2 125-02-9 11-41-0 12-53-3 100-52-7 11-43-2 100-51-6 178-50-9 123-86-4 11-36-3 12-54-4 1043-52-4 105-62-0 1124-37-5				
37-64-1 31-61-8 361-29-2 125-02-9 21-41-0 62-53-3 00-52-7 21-43-2 00-51-6 23-86-4 21-36-3 62-54-4 043-52-4 105-62-0 124-37-5				
31-61-8 361-29-2 125-02-9 11-41-0 52-53-3 00-52-7 11-43-2 00-51-6 178-50-9 23-86-4 11-36-3 52-54-4 043-52-4 105-62-0 124-37-5				
361-29-2 125-02-9 11-41-0 02-53-3 00-52-7 11-43-2 00-51-6 178-50-9 23-86-4 11-36-3 52-54-4 043-52-4 105-62-0 1124-37-5				
125-02-9 11-41-0 12-53-3 10-52-7 11-43-2 100-51-6 178-50-9 123-86-4 11-36-3 12-54-4 1043-52-4 105-62-0 1124-37-5				
21-41-0 22-53-3 00-52-7 21-43-2 00-51-6 278-50-9 23-86-4 21-36-3 22-54-4 0043-52-4 205-62-0 124-37-5	=			
22-53-3 00-52-7 '1-43-2 00-51-6 '78-50-9 23-86-4 '1-36-3 i2-54-4 043-52-4 '05-62-0 124-37-5	=			
00-52-7 11-43-2 00-51-6 178-50-9 23-86-4 11-36-3 32-54-4 043-52-4 105-62-0 124-37-5	=			
71-43-2 00-51-6 778-50-9 23-86-4 71-36-3 52-54-4 043-52-4 005-62-0 1124-37-5	=			
71-43-2 00-51-6 778-50-9 23-86-4 71-36-3 52-54-4 043-52-4 005-62-0 1124-37-5				
00-51-6 178-50-9 23-86-4 11-36-3 52-54-4 043-52-4 605-62-0 1124-37-5				
778-50-9 23-86-4 11-36-3 52-54-4 043-52-4 805-62-0 124-37-5				
23-86-4 11-36-3 52-54-4 043-52-4 005-62-0 124-37-5				
21-36-3 52-54-4 5043-52-4 605-62-0 124-37-5				
62-54-4 043-52-4 805-62-0 124-37-5				
043-52-4 805-62-0 124-37-5				
305-62-0 124-37-5				
124-37-5				
78-54-3				
82-50-5				
57-66-3				
38-94-5				
7-92-9				
36-21-6				
	043-35-3 664-93-9 101-58-9 819-77-3 64-19-7 10-82-7 08-93-0 08-94-1 42-96-1 84-74-2 11-42-2 17-81-7 41-78-6 64-17-5 75-04-7 07-06-2 07-21-1 50-00-0	664-93-9 001-58-9 319-77-3 64-19-7 10-82-7 08-93-0 08-94-1 42-96-1 84-74-2 11-42-2 11-42-2 11-81-7 41-78-6 64-17-5 75-04-7 07-06-2 07-21-1	664-93-9 001-58-9 1319-77-3 1319-77-	664-93-9 001-58-9 1319-77-3 1319-77-

	CAS number	Latex	Neoprene	Nitrile	PVC vinyl
Glycols	107-21-1				
Hexane	110-54-3				
Hydrobromic acid	10035-10-6				
Isobutyl alcohol (Isobutanol)	78-83-1				
Magnesia	1309-48-4				
Methyl acetate	79-20-9				
Methyl alcohol (or methanol)	67-56-1				
Methyl salicylate	119-36-8				
Methylamine	74-89-5				
Methylaniline	100-61-8				
Methylcyclopentane	96-37-7				
Methylene chloride	75-09-2				
Mono ethanol amine	141-43-5				
Naphtalene	91-20-3				
N-butylamine	109-73-9				
Nickel chloride	7718-54-9				
Nitrate of ammonium	6484-52-2				
Nitrate of potassium	7757-79-1				
Nitrobenzene	98-95-3				
Octyl alcohol	111-87-5				
Oleic acid	112-80-1				
Oxalic acid	144-62-7				
Phenyl chloride	108-90-7				
Phosphates of calcium	10103-46-5				
Phosphoric acid	7664-38-2				
Potassium acetate	127-08-2				
Potassium bicarbonate	298-14-6				
Potassium carbonate	584-08-7				
Potassium chloride	7447-40-7				
Potassium chionide Potassium cyanide	151-50-8				
Potassium ryanide Potassium manganate	7722-64-7				
Ü	7778-80-5				
Potassium sulphate					
Propylene dichloride	78-87-5				
Sodium bicarbonate	144-55-8				
Sodium bisulphite	7631-90-5				
Sodium carbonate	497-19-8				
Sodium chloride	7647-14-5				
Sodium chlorite	7681-52-9				
Sodium nitrate	7631-99-4				
Sodium sulphate	7757-82-6				
Stearic acid	57-11-4				
Styrene	100-42-5				
Tetrachloroethylene	127-18-4				
THF = tetrahydrofurane	109-99-9				
Toluen	108-88-3				
Tributyl phosphate	126-73-8				
Trichlorethylene	79-01-6				
Tricresyl phosphate	1330-78-5				
Triphenyl phosphate	115-86-6				
Zinc sulphate	7733-02-0				

Nothing = not recommended / Average * Good ** Very good ***

FOOD COMPATIBILITY

Food compatibility is governed by:

Regulation (EC) N $^{\circ}$ 1935/2004 of the European Parliament and of the Council of 27th October 2004 on materials and articles intended to come into contact with foodstuffs.

Materials and articles must be manufactured in compliance with good manufacturing practice so that, under normal or foreseeable conditions of use, they do not transfer their constituents to food in quantities which could:

- · Endanger human health;
- Bring about an unacceptable change in the composition of the food or a deterioration in the organoleptic characteristics thereof.

Food contact of plastic materials is governed by Regulation (EU) No 10/2011 and the related requirements.

Materials PVC/Vinyl or even Latex/Nitrile gloves (unless local legislation exists) are directly subject to these regulations. They define:

- Positives lists of authorized constituents;
- The purity criteria applicable to some of these constituents;
- Special migration limits in foodstuffs for certain constituents;
- Maximum residual quantities of some constituents in the material;
- An overall migration limit in foods.
- A limit of metal content for plastic materials and objects.

Annex III of Regulation (EU) 10/2011 provides the list of stimulants to be used for testing migration of constituents of plastic materials and articles intended to come into contact with foodstuffs:

- Aqueous foods (pH > 4.5): Simulants A, B and C.
- Acid food (pH ≤ 4.5): Simulant B;
- Alcoholic foods (≤ 20%): Simulant C;
- Alcoholic foods (> 20%): Simulant D1.
- Fatty foods: Simulants D1 and D2.
- Foods containing free surface fats: Simulant D2.
- Dry foods: Stimulant E.

EN ISO 13688 GENERAL REQUIREMENTS

Reference standard, not for use alone, but only in association with another standard containing the protection performance requirements.

This standard specifies general performance requirements for ergonomics, innocuousness, size designation, durability, ageing, compatibility and marking of protective clothing and the information to be supplied by the manufacturer with the protective clothing.

INTERNATIONAL MAINTENANCE CODE FOR ARTICLES

	TEXTILE						
×	Treatment prohibited.						
	Moderate treatment.						
	Very light treatment.						
	WASHING						
40	Maximum temperature 40°C. Normal mechanical treatment. Normal temperature rinsing. Normal spinning.						
40	Maximum temperature 40°C. Reduced mechanical treatment. Rinse at gradually decreasing temperature. Reduced spinning.						
Kub	Wash by hand. No machine washing. Maximum temperature 40°C. Treat with care.						
Ø	Do not wash. Treat with care when wet.						
	DRYING						
<u></u>	Can be dried in rotating drum dryer. Normal program.						
\odot	Can be dried in rotating drum dryer. Moderate, low temperature program						
18	Do not dry in rotating drum dryer.						
CHLORINATION							
\triangle	Chlorination (chlorine bleach).						
<u></u>	Chlorination possible solely in cold, diluted solution.						
	No chlorination.						
	IRONING						
	Iron at the maximum iron sole plate temperature of 200°C.						
	Iron at the maximum iron sole plate temperature of 150°C.						
a	Iron at maximum iron sole plate temperature of 110°C. Steam treatment presents risks.						
\bowtie	Do not iron. Steam treatment is forbidden.						
DRY-CLEANING							
	DRY-CLEANING						
0	DRY-CLEANING Dry cleaning. The circle stands for dry-cleaning for textile articles (leather and fur articles are excluded). It contains information on the various dry cleaning treatments.						

EN14404 KNEE PROTECTION

This European Standard provides the requirements and test methods for protective knee devices used by people that have kneel to carry out their work. This standard does not apply to the knee protection that are medical devices and are designed for sport.

KNEE PROTECTION						
Type 1	Knee protection independent of other product and attached around the leg					
Type 2	Plastic foam or other padding inserted in the pockets of trousers or permanently attached to the trousers					
Type 3	Devices that are not attached to the body but implemented during the movement of the user. They can be provided for each knee or both knees together					
Type 4	Protection of one or both knees, part of devices with additional functions, such as helping to stand or kneel. The knees protection can be worn on the body or independently					
Level 0	Knee protectors are supposed to be adapted to flat floors and no resistance to penetration is required					
Level 1	Knee protectors are supposed to be suitable for flat floors and resistance to penetration under a force of at least 100 (+/-5) N is required					
Level 2	Knee protectors are supposed to be suitable for difficult conditions and resistance to penetration under a force of at least 250 (+/-5) N is required					

EN342 PROTECTIVE CLOTHING AGAINST COLD

This standard specifies the requirements and performance test methods for protective clothing against cold at **temperatures lower than -5°C** (cold store / extreme cold workers).

There are two types of garment:

Garments: covering part of the body, e.g. parka, jacket, coat.

Suits: covering the whole body (trunk + legs), e.g. coveralls, parka & dungarees.

X (undergarment B/C/R): ,cler of the garment

X: Class of air permeability, AP

X: Class of resistance to water penetration WP (Optional)

NORDLAND

EN342 0,358 m².K/W (B)

	Wearer in movement with an activity									
	Light 11	5 W/m²		Medium 170 W/m²						
Insulation I cler M ² .K/W										
	0.4	m/s 3 m/s		n/s	0.4 m/s		3 m/s			
	8h	1h	8h	1h	8h	1h	8h	1h		
0.265	3	-12	9	-3	-12	-28	-2	-16		
0.310	-2	-18	6	-8	-18	-36	-7	-22		
0.390	-9	-28	0	-16	-29	-49	-16	-33		
0.470	-17	-38	-6	-24	-40	-60	-24	-43		
0.540	-24	-45	-11	-30	-49	-71	-32	-52		
0.620	-31	-55	-17	-38	-60	-84	-40	-61		

EN14058 PROTECTIVE CLOTHING AGAINST COOL ENVIRONMENTS

This standard specifies the requirements and performance test methods for protective garments (vests, jackets, coats, trousers) against cool environments.

These garments are for use in moderate low temperatures (-5°C and over) to protect against local body cooling. Not only for outdoor use such as in the construction industry; may also be used for indoor activities, such as in the food processing industry.

These garments are not always necessarily made of air impermeable or watertight materials. Therefore, in this European standard, these requirements are optional.

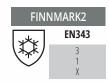
X: Class of heat resistance, Rct

X: Class of air permeability, AP

 \mathbf{X} : (Optional)

X: Class of resistance to water penetration WP (Optional)

ALASKA3						
Jyky	EN14058					
(1 ₄ x ^k /	2					
\smile	0,221 m ² . K/W					


luandatian	W	n²						
Insulation I	Air speed							
' cler M².K/W	M ² .K/W 0.4 m		3 n	n/s				
	8h	1h	8h	1h				
0.170	21	9	24	15				
0.265	13	0	19	7				
0.310	10	-4	17	3				

EN343 PROTECTIVE CLOTHING AGAINST RAIN

This standard specifies the requirements and test methods applicable to the materials and seams of protective clothing against foul weather (for example precipitation in the form of rain or snow), fog and ground humidity.

- y: Class of resistance to water penetration (1 to 4), Wp
- y: Class of water vapour resistance (1 to 4), R_{et}
- R: Water tower test on whole garment (optional)

DEFINITIONS

THERMAL RESISTANCE (Rct) IN M2.K/W:

Measurement of the thermal insulation provided.
Divided into 4 classes (from 1 to 4) from the least insulating to the most insulating.
The higher the value, the greater the thermal insulation

AIR PERMEABILITY (AP) IN MM/S:

Determines the complex's permeability to air.

Divided into 3 classes (from 1 to 3) from the least airtight to the most airtight.

RESULTANT EFFECTIVE THERMAL INSULATION:

Measured on moving dummy (/_{cler}).

The thermal insulation coefficient, expressed in m².K/W, is used to determine the optimum usage temperature of the garment in relation to the individual's activity and his exposure time. Thermal insulation is measured with undergarments of type:

- **(B) for ensembles** (Undershirt with long sleeves, long underpants, socks, bootee + thermojacket, thermopants, knitted gloves, balaclava)
- (R) for garments (Undershirt with long sleeves, long underpants, socks, bootees, jacket, trousers, shirt, knitted gloves, balaclava)
- (C) provided by the manufacturer

WATER VAPOUR RESISTANCE (Ret) IN (M2.PA)/W:

Measures the evaporative resistance, i.e. the product's obstacle to the passage of water vapour, or the barrier it offers to evaporation of transpiration on the surface of the skin. The higher a product's water vapour resistance, the greater this product's barrier to the passage of water vapour:

A breathing product has a low water vapour resistance.

Divided into 4 levels (from 1 to 4) from the least breathable to the most breathable.

Water vapour resistance	Class						
Ret Class	1	2	3	4			
M2 - Pa w	Ret > 40	25 < Ret > 40	15 < Ret > 25	Ret < 15			

RESISTANCE TO WATER PENETRATION (WP) IN PASCAL:

Measurement of the outer material and seams' resistance to water penetration under a water pressure of (980+/-50) Pa/min.

Divided into 4 levels (1 to 4) from the least impermeable to the most impermeable.

Water penetration resistance WP	Class						
resistance WP	1	2	3	4			
Specimen to be tested Material before treatment Material after each pre-treatment	WP > 8 000 Pa -	- WP > 8 000 Pa	- WP > 13 000 Pa	- WP > 20 000 Pa			
Seams before pre-treatment	WP > 8 000 Pa	WP > 8 000 Pa	WP > 13 000 Pa	-			
Seams after pre-treatment by cleaning	-	-	-	WP > 20 000 Pa			

TOWER TEST:

Wicking length on sleeves and lower hems	Max 5 cm
Wicking length on trouser hems	Max 10 cm
Longueur de mèche sur les ourlets de capuche	Max 4 cm
Class 3	0 cm ²

EN ISO 20471 HIGH VISIBILITY CLOTHING

This standard specifies the requirements for protective clothing aiming to signal the presence of the wearer visually, so that he may be detected and seen in hazardous situations, in all conditions of daylight, and night under illumination of car headlights.

There are three classes of high-visibility clothing. Each class must have minimum surfaces of visible material constituting the garment; the higher the class, the more visible the garment:

	Class 3	Class 2	Class 1
Background material (Fluorescent)	0,80 m ²	0,50 m ²	0,14 m ²
Retroreflective material (Bands)	0,20 m ²	0,13 m ²	0,10 m ²

Marking:

X: Class of high visibility surface (from 1 to 3)

EN ISO 20471 EN ISO 20471

2: Class of high visibility surface (from 1 to 3)

Max. 25x: Optional marking, number of maximum washes authorized for the model. On this example: 25 washes maximum (see indication of service temperature on the garment tag).

Max. 25x

EN17353 **IMPROVED VISIBILITY EQUIPMENT** FOR MEDIUM RISK SITUATIONS

This standard specifies the requirements for enhanced visibility equipment in the form of a garment, or device, capable of visually signalling the presence of the user.

Enhanced Visibility Equipment is intended to provide visibility of the wearer in low or medium risk situations in all daylight conditions and/or under the illumination of vehicle headlights or headlights in the dark. This standard does not apply to high visibility equipment in high risk situations which are covered by EN ISO 20471..

ТҮРЕ А	ТҮРЕ В	TYPE AB
Daylight Daylight	Dark conditions	Daylight, twilight and dark conditions
Equipment using fluorescent material	Equipment using retroreflective material	Equipment using fluorescent material and retroreflective or combined performance material
	B1 (free hanging)	
	B2 (limbs)	AB2
	B3 (on torso or torso and limbs)	AB3

Minimum surface in m2 for B1 and B2 type:

	B1	B2
Retroreflective material	0,003	0,018

Minimum surface in m² for type A, B3 and AB type:

	Α	В3	AB	A	В3	AB
Height h of the user	h	m				
Fluorescent material	0,14	-	0,14	0,24	-	0,24
Retroreflective material	-	0,06	0,06	-	0,08	0,08
Combined performance material	-	-	0,14	-	-	0,24

EN1149-5 PROTECTIVE CLOTHING TO DISSIPATE STATIC ELECTRICITY

This European Standard specifies requirements for materials and the design of protective electrostatic dissipation clothing used in conjunction with a grounded system in order to prevent incendiary discharges. WARNING: These requirements may be insufficient in oxygen enriched flammable environments. This standard is not applicable for protection against mains voltages.

The control of undesirable static electricity on the person is often necessary.

The electrostatic potential may, indeed, have serious consequences on the charged individual, because it can be high enough to cause dangerous sparks.

After a risk assessment, the wearing of protective electrical dissipation clothing may be necessary. The use of clothing certified according to EN1149-5 is then adapted.

The ATEX Directive 1999/92/EC, in its Annex II-A-2.3, requests that workers be equipped with work clothes made of materials that do not produce electrostatic discharges that can ignite explosive environments.

The electrostatic potential can also affect equipment sensitive to electric discharge. Antistatic clothing is often used on electronic manufacturing sites, assembling semiconductors for example. Finally, they are used on sites with controlled atmospheres such as automotive paint workshops, to avoid the emission of particles that may be deposited on the body paint.

The antistatic charge dissipation can be provided by a process limiting the build up of charge, or by adding carbon or metal wires. People wearing protective electrostatic charge dissipation clothing must always be grounded with a resistance of less than 10°Ω, for example, by wearing appropriate footwear such as the safety shoes stated in EN ISO 20345, or by other suitable means.

EN1073-2 PROTECTIVE CLOTHING AGAINST RADIOACTIVE CONTAMINATION

This standard specifies the requirements and test methods for non ventilated protective clothing against radioactive contamination in the form of particles.

Clothing of this type is designed only to protect the body, the arms and the legs of the wearer, but it may be used with accessories that protect other parts of the wearer's body (for example, boots, gloves, respiratory protective device - APR).

The garments are classified according to their nominal protection factor (ratio between the concentration of test particles in the ambient atmosphere and the concentration of test particles inside the garment), determined in relation to the total inward leakage (ratio between the concentrations of test particles insider the garment and inside the test chamber). The classes are

CLASS	NOMINAL PROTECTION FACTOR
3	500
2	50
1	5

EN61482-2 PROTECTIVE CLOTHING AGAINST THERMAL HAZARDS FROM AN ELECTRIC ARC

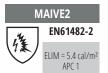
Specifies the requirements and test methods applicable to materials and clothing for protective clothing for electricians against the thermal risks of an electric arc.

Other effects than the thermal effects of an electric arc such as noise, light emission, pressure build-up, hot oil, electric shock, the consequences of physical and mental shock or toxic influences are not covered by this standard.

Protection of the eyes, face, head, hands and feet against the risk of electric arc is not covered by this standard.

Protective clothing for work intentionally using an electric arc, e.g. arc welding, plasma torch, is not covered by this standard.

ELIM: maximum thermal energy received at the level of the garment by a user who undergoes an electric arc without causing a hole in the fabric or the user suffering second degree burns.


ATPV: maximum thermal energy received at the clothing level by a user during an electric arc with a 50% probability of causing second degree burns.

Box test: this test represents the explosion of an electric meter with the energy coming out of a box and directed only towards one side where the wearer is.

There are 2 levels:

- APC1: 4000 amps
- APC2: 7000 amps

Open arc: this test simulates the energy to which a wearer may be exposed when in the presence of an electrical explosion triggered in the test by a voltage rise between electrodes. The result is expressed by the ELIM value

EN ISO 11611 PROTECTION USED IN WELDING AND ALLIED PROCESSES

This standard specifies the performance requirements for protective clothing for use by operators in welding and allied processes with comparable risks. This type of protective clothing is intended to protect the wearer against molten metal splash, short contact with flame and UV radiation. It is intended to be worn at ambient temperature, continuously for up to 8 hours.

Class 1

protection against low risks during welding techniques and situations producing fewer projections and low radiant heat.

Class 2

protection against higher risks during welding techniques and situations producing more projections and a higher radiant heat.

MAIVE2

EN ISO 11611

A1 Test

EN ISO 14116 PROTECTION AGAINST FLAME

The standard specifies the performance requirements for materials, material assemblies, and protective clothing with limited flame spreading to reduce the risk that a garment will burn on occasional and short term contact with small flames, thus constituting a hazard in itself.

This standard is not appropriate where, in addition to flame protection, heat protection is required. Instead, international standards such as ISO 11612 should be used. The performance level is indicated and explained on the garment's label.

EN ISO 11612 PROTECTION AGAINST HEAT AND FLAME

Protection against heat and flame. This standard specifies the performance requirements of materials and protective clothing against heat and flames. They apply to clothing made of soft material, designed to protect the human body except the hands against heat and/ or flame.

Tested are

Test	Code	Performances
Limited flame spread	А	A1 and/or A2
Convective heat	В	B1 to B3
Radiant heat	С	C1 to C4
Molten aluminium splash	D	D1 to D3
Molten metal splash	E	E1 to E3
Contact heat	F	F1 to F3

EN ISO 11612

A1 A2 B1 C1 E3 F1

Requirements for chemical protection clothing with liquid-tight (type 3) or spray-tight (type 4) connections, including items providing only partial body protection (types PB [3] and PB [4]).

This standard sets out the minimum requirements for the following types of limited use and reuseable chemical protective clothing:

- Clothing protecting the full body with liquid-tight connections between the various clothing parts **(Type 3: liquid-tight clothing)**;
- Clothing protecting the full body with spray-tight connections between the various clothing parts **(Type 4: spray-tight clothing)**;

Note: These standards were formerly entitled EN1512 (Type 4) and EN1511 (Type 3).

STANDARDS	ТҮРЕ	CHEMICAL PROTECTION
EN13034	6	Against splashes
EN ISO 13982-1	5	Against dust (asbestos)
EN14605	4	Against mists
EN14605	3	Against sprays

TESTS									
General	Tests & Specific	Level of protection							
performance	performances	3a	4a	5	6a				
	Internal pressure	-	-	-	-				
	Leak to interior	-	-	Х	-				
Performance requirements	Penetration by a jet of liquid	Х	-	-	-				
for the whole garment	Penetration by a spray (liquid spraying)	-	Х	-	-				
	Against solid particles	-	-	Х	-				
	Penetration by a spray (light spraying)	-	-	-	Х				
Performance	Mechanical resistance	Х	Х	χ	Х				
requirements for seams and joints	Resistance to permeation and penetration by liquids	Х	Х	-	-				
	Abrasion / Tearing / Perforation	Х	Х	Х	Х				
	Resistance to tensile strength	Х	Х	-	Х				
Performance	Resistance to cracking by bending	Х	Х	Х	-				
requirements for the constituent materials	Resistance to cracking by bending at -30°C	X optional	X optional	-	-				
of the garment	Resistance to pemeation by liquids	Х	Х	-	-				
	Resistance to penetration by liquids	-	-	-	Х				
	Repulsion to liquids	-	-	-	Х				

a - Lorsque l'équipement de protection ne protège que certaines parties du corps (torse, bras, jambes), seules les exigences de performance pour les matériaux constituant le vêtement sont exigées (type 6, 4 et 3).

Performance requirements for protective clothing against chemical products offering full body protection against air-borne solid particulates (type 5 clothing).

This standard sets out the minimum requirements for chemical protection clothing resisting penetration of solid particulates suspended in air (type 5). This clothing offers full body protection, including the torso, arms and legs, such as one or two-piece coveralls, with or without hood or face-shield, with or without foot protection.

Requirements for chemical protection clothing offering limited performance against liquid chemical products (type 6 equipment), including clothing for partial body protection (Type PB [6]).

This standard sets out the minimum requirements for limited use and reusable limited performance chemical protective clothing. Limited use chemical protective clothing is intended for use in cases of a potential exposure to **light sprays**, **liquid aerosols** or lowpressure, **low-volume splashes**, against which a complete liquid permeation barrier (at the molecular level) is not required.

This standard specifies the requirements and test methods concerning reusable protective clothing for limited use providing protection against infective agents.

Associated with standards for protective clothing against chemical products, the letter B is added after the garment type. Examples: TYPE 6-B / TYPE 5-B / TYPE 4-B / TYPE 3-B.

EN ISO 27065PROTECTIVE CLOTHING WORN BY OPERATORS APPLYING LIQUID PESTICIDES.

Level **C1** protective clothing is suitable when the potential risk is relatively low. Level C1 protective clothing provides the minimum protection and is not suitable for the handling of concentrated pesticide formulations. It can be used as basic protective clothing with other items when the potential risk is relatively higher.

Level **C2** protective clothing, including partial body protection, is suitable when it has been determined that the protection required is greater than that provided by level C1 protective clothing. C2 level protective clothing generally offers a balance between comfort and protection. This protective clothing is not suitable for the handling of concentrated pesticide formulations. It can be used as basic protective clothing with other items when the potential risk is relatively higher.

Level **C3** protective clothing, including partial body protection, is suitable when it has been determined that the potential risk is high. For level C3 protective clothing, precautionary measures, such as short-term use, are necessary, as these clothing can generate excessive heat, leading to exhaustion and heat stress. Level C3 protective clothing, including partial body protection, is suitable for the handling of diluted pesticides as well as concentrated pesticides.

The risk incurred should be assessed according to the toxicity of the phytosanitary product (refer to its labelling) and the degree of exposure to the operator. For example, it is easy to understand that the degree of operator exposure will be much higher with aerial spraying towed by an open cab tractor than with manual trigger spraying.

EN ISO 20344 TEST METHODS FOR FOOTWEAR

This standard defines the test methods for safety footwear, protective footwear, and occupational shoes. It may be used only in conjunction with standards EN ISO 20345 and EN ISO 20347, which specify the requirements for the shoes as a function of specific levels of risk involved.

EN ISO 20345 BASIC REQUIREMENTS FOR SAFETY FOOTWEAR

In reference to standard EN ISO 20344, this European standard defines the basic and the additional (optional) requirements for safety footwear for the workplace, marked «S». The safety shoe is equipped with safety toe caps designed to withstand a maximum impact of 200 joules and crushing up to 15 kN.

EN ISO 20347 BASIC REQUIREMENTS FOR OCCUPATIONAL FOOTWEAR

These shoes are different from safety/protective footwear in that they have no protective toe cap for impact and crushing.

EN ISO 61340-5-1 GENERAL REQUIREMENTS -ESD CONTROL FOOTWEAR

This standard specifies the requirements and tests for electrostatic shoes with specific applications. It describes the test methods used to determine the electrical resistance of shoes used to control the electrostatic potential of the user's workstation.

EN ISO 20349-1 / EN ISO 20349-2 REQUIREMENTS AND TEST METHODS FOR PROTECTION AGAINST RISKS IN WELDING AND ALLIED PROCESSES.

This standard specifies the requirements and tests for protective shoes against heat risks and molten metal splashes as in foundries or welding.

THE PARTS OF A SHOE

	SIZE CORRESPONDANCE TABLE													
EU	35	36	37	38	39	40	41	42	43	44	45	46	47	48
UK	2	3	4	5	6	6.5	7	8	9	10	10.5	11	12	13
US	3	4	5	6	7	7.5	8	9	10	11	11.5	12	13	14
cm	23.1	23.7	24.4	25.1	25.7	26.4	27.1	27.8	28.4	29.1	29.7	30.3	31	31.6
mm	231	237	244	251	257	264	271	278	284	291	297	303	310	316

SB OR S1 TO S7 OR SBH (SAFETY FOOTWEAR) • OB OR O1 TO O6 OR OBH (OCCUPATIONAL FOOTWEAR)						
CLASS 1 or 2	EN ISO 20345	EN ISO 20347				
ALL MATERIALS	SB: basic properties	OB : basic properties				
CLASS 1 - Assembled footwear Leather footwear and other materials, except rubber or polymer footwear	S1 : basic properties plus: - closed back - anti-static - energy absorbing heel	01 : basic properties plus: - closed back - anti-static - energy absorbing heel				
	S2 : the same as S1 plus: - waterproof	02 : the same as 01 plus: - waterproof				
	S3 : the same as S2 plus: - puncture resistant sole - studded sole	03 : the same as 02 plus: - puncture resistant sole - studded sole				
	S3L / S3S: like S2 plus: - puncture-resistant sole with non-metallic insert: L tested with Ø 4.5 mm spike / S with Ø 3 mm spike - lugged outsole	O3L / O3S: like O2 plus: - puncture-resistant sole with non-metallic insert: L tested with Ø 4.5 mm spike / S with Ø 3 mm spike - lugged outsole				
	S6 : the same as S2 plus: - waterproof	06 : the same as 02 plus: - waterproof				
	S7: same as S3 (metal insert) plus waterproof					
	S7L : the same as S3L plus: - waterproof					
	S7S : the same as S3S plus: - waterproof					
CLASS 2 - Fully moulded footwear All rubber footwear (fully cured*) or all polymer	S4 : basic properties plus: - closed back - anti-static - energy absorbing heel	O4 :basic properties plus: - anti-static - energy absorbing heel				
	S5 : the same as S4 plus: - puncture resistant sole - studded sole	05 : the same as 04 plus: - puncture resistant sole - studded sole				
	S5L / S5S: like S4 plus: - puncture-resistant sole with non-metallic insert: L tested with Ø 4.5 mm spike / S with Ø 3 mm spike - lugged outsole	OSL / OSS: like O4 plus: - puncture-resistant sole with non-metallic insert: L tested with Ø 4.5 mm spike / S with Ø 3 mm spike - lugged outsole				
HYBRID FOOTWEAR Rubber foot (fully cured) or all polymer (fully moulded) / Top leather upper and other materials	SBH : properties specific to hybrid safety footwear	OBH: properties specific to hybrid work footwear				

SYMBOLS F	OR INDIVIDUAL SPECIFICATIONS EN ISO 20: 20347 (without toe cap)	345 / EN ISO
	Sole puncture resistance: P: with metal insert PL: with non-metal insert and tested with Ø 4.5 mm tip PS: with non-metal insert and tested with Ø 3 mm tip	P PL PS
	Electrical properties: Conductive footwear	С
	Antistatic footwear	Α
	Insulating footwear	See EN50321
Footwear	Resistance to aggressive environments: Heat-insulated sole 150°C sandbox test, 30 minutes of exposure.	ні
	Sole insulated against cold Box test at -17°C for 30 minutes	CI
	Energy absorbing heel	E
	Water-resistant of the whole shoe (waterproof shoes in leather and other materials, class 1)	WR
	Metatarsal impact protection	М
	Ankle protection	AN
	Resistance of stone guards to abrasion	SC
	Cut-resistant upper	CR
Upper	Resistance of the rod penetration and water absorption (shoes in leather and other materials, class 1)	WPU
	Contact-heat resistant outsole 300°C for 60s	HRO
Outsole	Oil-resistant outsole	FO
	Grip system for ladders (spike design)	LG

SYMBOLS FOR INDIVIDUAL SPECIFICATIONS EN ISO 2034 20349-2	19-1 EN ISO
Floor types	Symbols
Resistance to molten metal splashes, with use of aluminum as molten metal during the test. (EN ISO 20349-1)	AL
Resistance to molten metal splashes, with use of cast-iron as molten metal during the test. (EN ISO 20349-1).	FE
250°C sandbox test, 40 minutes of exposure (HI-3). (EN ISO 20349-1)	ні
WG indicates that the footwear complies with the requirements defined for welding footwear. (EN ISO 20349-2)	WG

RESISTANCE TO SLIPPING				
On ceramic floors	Symbols			
*Fundamental requirement: Resistance to sliding on Ceramic Flooring with water and detergent lubricant NaLS (Lauryl Sulphate)				
*Additional requirement: Slip resistance on Ceramic Floor with glycerine lubricant.	SR			

If there is a risk of falling, it is compulsory to use a protective device against falls from a height. In order of priority: collective type protection (see DELTA PLUS SYSTEMS catalogue), then individual type protection if the first one is not possible.

An **INDIVIDUAL ANTI-FALL SYSTEM** is comprised of at least three elements

HARNESS

FALL ARREST EQUIPMENT

EN363

Describes the elements and situations of personal protection against falls from height.

EN364 TEST METHOD

Describes the equipment and test methods for PPE against falls from height.

EN365 GENERAL REQUIREMENTS FOR THE INSTRUCTIONS FOR USE AND THE MARKING

Describes the markings and information (operating instructions) on or accompanying the PPE against falls from a height.

HARNESS

EN361 FULL BODY HARNESS

Body securing device intended to stop falls. The full body harness can be made of straps, buckles and other elements; set and adjusted in a right way on the body of an individual to secure him during a fall and afterwards.

EN355 ENERGY ABSORBER

Component of a fall arrest equipment, which guarantees the stop of a fall from a height in safety by reducing the impact of the shock. WARNING: If we associate a lanyard energy absorber, the total length of the entire device must not exceed 2 m.

EN360 SELF-RETRACTABLE FALL

Fall arrester with self-locking device and a self-retractable system for the lanyard. An energy reducer (absorber) can be built-in in the equipment.

EN353-1 MOBILE FALL ARRESTER ON RIGID ANCHORAGE LINE

Equipment consisting of a mobile fall arrester with self-locking, integral with its rigid anchorage line (rail, cable...). An energy reducer can be built-in on the equipment

EN353-2 MOBILE FALL ARRESTER ON FLEXIBLE ANCHORAGE LINE

Equipment consisting of a mobile fall arrester with self-locking, integral with its flexible anchorage line (rope, cable...). An energy reducer (absorber) can be built-in in the equipment.

EN795 2012 ANCHORAGE DEVICES

Element of a fall arrester system to which a personal protective equipment can be fastened.

Type A - NON PPE: Anchor device with one or more stationary anchor points with the need of a structural anchor. **Type B:** Anchor device with one or more stationary anchor points without the need of a structural anchor.

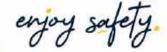
Type C - NON PPE: Anchor device employing a flexible anchor line with maximum deviation of 15°.

Type D - NON PPE: Anchor device employing a rigid anchor line with maximum deviation of 15°.

Type E: Anchor device for use on surfaces with a maximum slope of 5°.

EN362 CONNECTOR

Connection element or equipment component. A connector can be karabiner or a snap hook.


Class A: Anchorage connector, automatic lock used as the component and designed to be connected directly to a specific type of anchorage.

Class B: Primary connector with automatic lock used as the component.

Class M: Multi-purpose connector, primary or quick opening, used as a component, which can be loaded along its major axis or minor axis.

Class Q: Quick opening connector used in long-term or permanent applications, screw lock. When completely screwed this part is a supporting part of the

Class T: Manufactured end connector, automatic lock, designed as part of a subsystem for attachment so that the load is carried in a predetermined direction.

ANCHORAGE POINTS

WORK SITUATIONS

WORK
OSITIONING
SYSTEM

EN358 WORK POSITIONING OR RESTRAINING BELTS AND LANYARDS

A work positioning system consists of components (work positioning belt and lanyard) linked to one another to form a complete equipment.

EN358 WORK POSITIONING OR RESTRAINING BELTS AND LANYARDS

EN354 LANYARDS

Connection elements or equipment component. A lanyard can be in rope made of synthetic fibres, in metallic rope, in strap or in chain. CAUTION: A lanyard without energy absorber must not be used as a fall arrest equipment.

EN12841 ROPE ACCESS SYSTEM A ROPE DEVICE FOR WORK POSITIONING.

There are several types of device:

- **Type A:** Rope adjuster device for safety support that accompanies the user during his changes in position and/or to adjust the safety support length and which automatically locks on the safety support under a static or dynamic load action.
- **Type B:** Ascent device for work support, manually operated rope adjustment device which, when attached to a safety support, locks under the action of a load in one direction and slides freely in the opposite direction. A type B device must be used in conjunction with a type A device connected to a separate safety support.
- **Type C:** Descending device for work support, manually operated rope adjustment device with friction which allows the user to perform a controlled downward movement and to stop, by releasing, anywhere on the safety support. A type C device must be used in conjunction with a type A device connected to a separate safety support.

EN813 SEAT HARNESSES

Belts equipped with a ventral point allowing a system of support, restraint, or access by ropes.

EN358 WORK POSITIONING OR RESTRAINING BELTS AND LANYARDS EN354 LANYARDS

EN12275 MOUNTAINEERING AND CLIMBING EQUIPMENT - CONNECTORS

Safety requirements and test methods.

- **Type B:** Primary connector with automatic lock with enough strength to be used anywhere on a safety system.
- **Type H:** HMS self-closing connector, usually pear-shaped, used to link a mountaineer to a Via Ferrata anchoring system.
- **Type K:** Via Ferrata self-closing connector, used primarily for dynamic belaying, HMS type.
- **Type D:** Directional connector or combination of one or more connectors with automatic lock and straps, used to ensure that the load is carried in a predetermined direction.
- **Type A:** Special anchorage automatic lock connector only used to be directly connected to a special type of anchorage.
- **Type Q** (Quicklink): Connector with screw lock. When completely screwed this part is a supporting part of the connector.

EN12278 MOUNTAINEERING AND CLIMBING EQUIPMENT - PULLEYS

Safety requirements and test methods

EN1891 SHEATHED BRAIDED ROPE WITH A LOW COEFFICIENT OF ELONGATION (STATIC ROPES)

EN341 PPE AGAINST FALLS FROM HEIGHT

Descending devices, classified according to the following data

- Class A: Descent energy W up to 7,5 x 106 J
- Class B: Descent energy W up to 1,5 x 106 J
- Class C: Descent energy W up to 0,5 x 106 J
- Class D: For a single descent. The descent energy depends on the maximum descent height and the maximum nominal load.

EN1496 RESCUE EQUIPMENT

Rescue lifting devices. There are several device classes:

- Class A: Component or subset of a rescue equipment for the lifting of a person with the help of a rescuer, or on its own from a low point to a high point.
- Class B: Analogue device of class A device, but with an additional function of manual control for descent to lower a person over a limited distance of 2 m.

EN1498 RESCUE STRAP


EN341 DESCENDING DEVICES

OTHER QUALIFYING STANDARDS

Recommandations	CEN/TS 16415		
for severals users	It is not a standard but a recommendation to test the anchors used by 2 or more persons. This technical specification was approved by CEN (European Committee for Standardisation) on July 30, 2012 for a provisional application and allows the use of an anchor by several people simultaneously.		
Mountaineering and	EN567 EQUIPMENT FOR MOUNTAINEERING AND CLIMBING		
climbing	Safety requirements and test methods for blockers.		
	EN12275 MOUNTAINEERING AND CLIMBING EQUIPMENT - CONNECTORS		
	EN12278 MOUNTAINEERING AND CLIMBING EQUIPMENT - PULLEYS		
Load securing	DIRECTIVE 2006/42/CE		
	for the machines or equipments with mobile function.		
Medical devices	DIRECTIVE 93/42/CEE - EU REGLEMENT 2017/745		
	Pour les dispositifs ou accessoires médicaux.		
Waterproofing	EN60529:1991 + A1:2000 + A2:2013		
	The protection index (IP) Classifies the level of protection offered by a material from solid and liquid intrusion. The index format is IPxx where the 1st digit indicates the protection from dust, the 2nd digit the protection from water intrusion.		

THE REGULATION (EUROPEAN UNION)

EU Regulation 2016/425 establishes the requirements applicable to the design and manufacture of personal protective equipment (PPE) intended to be made available on the market, with a view to ensuring the protection of the health and safety of users.

Compliance with the provisions and requirements of this Regulation allows the manufacturer to affix the CE marking on the PPE. The EU Regulation 2016/425 has replaced the EEC Directive 89/686 since 21/4/2018.

STANDARDISATION

Its objective is to develop test methods and requirements in the form of standards defining the technical specifications of products. Some of them, mostly requirements standards, are harmonised with EU Regulation 2016/425. Compliance with these harmonised standards gives an assurance of compliance with the requirements of EU Regulation 2016/425.

CATEGORISATION

Taking into account the level of risk covered, the Regulation defines the PPE categories and determines the various manufacturer's obligations:

- PPE category 1: Protection against minor risks.
- PPE category 2: All PPE that are not category 1 or 3.
- PPE category 3: Protection against disability or fatality.

CERTIFICATION PROCEDURE

- Category 1 PPE: Evaluation of conformity by the manufacturer (Module A)
- **PPE category 2 and 3:** EU type examination of the PPE (Module B) by a notified independent body for which compliance (with Regulation EU 2016/425) is verified using standards that are in accordance with the regulation. Issuance of the EU Type Examination Certificate (confidential document).
- PPE category 1, 2 and 3: CE marking on the product.
- PPE category 3: Control by a notified independent body that ensures compliance of the manufacture with the examined PPE:
- either monitoring of conformity to the type based on the internal control of production and supervised controls of the product at random intervals (Module C2),
- or conformity to the type based on quality assurance of the production method (Module D).
- PPE category 1, 2 and 3: Writing by the manufacturer of the EU Compliance Declaration which proves the compliance of the PPE with Regulation EU 2016/425 to the distributor and the market enforcement authorities.

The product sheet, the user instructions and the Declaration of Conformity are available online on our website: www.deltaplus.eu

OTHER ACCREDITATIONS (OUTSIDE EUROPEAN UNION)

Some of our products are accredited under the regulations of many countries.

The products concerned (and / or their bear the following markings:

USA	ANSI ALIY MOSH	Ukraine	23
Argentina	UL © AR 1983	Common Economic Space (Russia, Belarus, Kazakhstan)	EAC
Brazil	CA	United Kingdom	UK CA
China	Normes GB	omeed kingdom	CA
Canada		Mexico	<u>NOM</u>

Head	prote	ction
IICau	DIOLE	CLIUII

AIR COLTAN	64	EGON YELLOW	42	M1200VW	84	PACAYA CLEAR STRAP	33
ASO2 CLEAR	36	FILM GOGGLE	47	M1202BHC	85	PACAYA CLEAR STRAP LYVIZ	32
ASO2 SMOKE	36	FILTER 11	50	M1205	82	PACAYA SMOKE	33
BADGE-U	62	FILTER-IN	50	M1205V	82	PACAYA SMOKE LYVIZ	32
BALBI 2	53	FORESTIER 3	61	M1300V	82	PACAYA T5	51
BARRIER 2	49	FUEGO	62	M1300V2	83	PICO 2	53
BARRIER PLATE 2	49	FUJI2 CLEAR	36	M1300VB	85	PIT-RADIO 3	66
BASALPHA	63	FUJI2 GRADIENT	36	M1305V	82	PITON 2 CLEAR	44
BASGAMMA	62	GALERAS CLEAR	46	M1305VW	82	PITON CLEAR 🛇	44
BASWELD	49	GALERAS SMOKE	46	M2FP2V	83	QUARTZ I	60
BLOW2 CLEAR	35	GO-SPECS TEC CLEAR	32	M2FP2VPLW	83	QUARTZ UP III	60
BLOW2 LIGHT MIRROR	35	GRANITE PEAK	57	M2FP2VW	84	QUARTZ UP IV	60
BLOW2 MIRROR	35	GRANITE WIND	57	M2FP3V	83	RIMFIRE CLEAR	34
BRAVA2 CLEAR	43	HARNESS O 2	56	M3FP1	84	RIMFIRE MIRROR	34
BRAVA2 CLEAR AB	43	HARNESS V	59	M6000 A1	77	RIMFIRE POLARIZED	34
BRAVA2 LIGHT MIRROR	44	HARNESS VI	58	M6000 P2	78	RUIZ 1 ACETATE	47
BRAVA2 MIRROR	44	HEKLA2	45	M6000 P2 CLIP	78	RUIZ 1 🕅	47
BRAVA2 SMOKE	43	HELIUM 2 BLUE BLOCKER	38	M6000 P3	78	SAJAMA	46
BRAVA2 YELLOW	43	HELIUM 2 CLEAR	38	M6000E A2	77	SCREEN	49
CASOUD 3	50	HELIUM 2 DETECTABLE	38	M6000E ABEK1	77	SCREEN PLATE	49
CASOUD2HE	50	HELIUM 2 SMOKE	38	M6000E PREP2	77	SPA 3	68
CONIC DISPLAY	71	HESTICKER	63	M6000E PREP3	77	SPIDER REFILL FFP2	81
CONIC2 010	71	HM11001U	85	M6000REFP2CLIP	78	SPIDER REFILL FFP2W	81
CONIC2 200	71	INTERHYKIT	67	M6400 CHEM KIT	75	SPIDER REFILL FFP3	81
CONIC2 500	71	INTERLAGOS FOLDABLE	67	M6400 MARS KIT	75	SPIDERMASK P2 1+5	81
CONICAP2 01	70	INTERLAGOS LIGHT	68	M6400 SPRAY KIT	75	SPIDERMASK P2W X5	81
CONICAPBR2 10	70	INTERLAGOS LIGHT HE	68	M6400E JUPITER	75	SPIDERMASK P3 1+5	81
CONICCO2 200	71	INTERLAGOS NB 2	67	M9000 P3	76	SUPER QUARTZ	61
CONICCOPLUS200	70	INTERLAGOS2	67	M9001E A2	76	SUZUKA 2	68
CONICDE200	71	IRAYA CLEAR	39	M9001E A2P3	76	TOBA 3 T5	51
CONICFIR010B	69	IRAYA SMOKE	39	M9001E ABEK2	76	VISONYXPR	56
CONICFIR050	69	IRAYA YELLOW	39	M9001E ABEK2P3	76	VISOR FLASH 2	53
CONICFIRDE050	69	JUGALPHA	63	M9200 - ROTOR GALAXY	74	VISOR HOLDER	54
CONICFIT010B	69	JUGGAMMA	62	M9300 - STRAP GALAXY	74	VISOR T-GUARD	53
CONICFIT100	69	KILIMANDJARO CLEAR	45	MAGNY COURS 2	66	VISOR TORIC CLEAR	53
CONICMOVE01B	70	KILIMANDJARO CLEAR AB	45	MAGNY HELMET 2	66	VISOR TORIC T5	53
CONICMOVE01BRB	70	KILIMANDJARO SMOKE	45	MEIA CLEAR	40	VISOR-H	54
CONICPLUS200	70	LIPARI2 CLEAR	41	MEIA SMOKE	40	VISOR-HOLD MINI	54
CONICSOF010B	69	LIPARI2 T5	51	MEIA YELLOW	40	VISOR-U	54
DIAMOND V	59	M1100	84	MENTALPHA	63	VISORG	54
DIAMOND V UP	59	M1100V	84	MILO CLEAR	41	VISORPC	54
DIAMOND VI WIND	58	M1100VB	85	MILO SMOKE	41	VULCANO2 CLEAR	37
DYNAMIC JUGALPHA	63	M1105	82	MURIA 1 INCOLORE	47	VULCANO2 PLUS CLEAR	37
DYNAMIC JUGBETA	63	M1200	84	NECKALPHA	62	VULCANO2 SMOKE	37
EGON CLEAR	42	M1200V	83	ONYX2	56	WINTER CAP	62
EGON LIGHT MIRROR	42	M1200VB	85	PACAYA CLEAR	33	ZIRCON 1	61
EGON SMOKE	42	M1200VPLUS	83	PACAYA CLEAR LYVIZ	32		

		Hai	nd pr	otection			
ALPHA VE905	122	DPVE702P	135	FC115	131	PICAFLOR VE240	123
APOLLON VV733	108	DPVE702PG	134	FCN29	110	PM159	103
APOLLON WINTER CUT VV737	126	DPVE712GR	135	FIB49	114	PM160	103
APOLLON WINTER VV735	126	DPVE715	134	FIBKV02	114	PVC7335	118
APOLLONIT W734	106	DPVE716	134	GFA115K	131	PVCC400	118
ATHOS VV902	107	DPVE724RO	135	GFBLE	109	PVCC600	118
ATON VV731	110	DPVE727	135	HERCULE VV750	127	PVCGRIP35	118
BOREE VV901	107	DPVE728	134	HESTIA W702NO	99	SAFE & STRONG VV811	99
BOROK VV903	127	DPVE730	134	KCA15	132	SAFE & TOUCH VV905NO	107
CA515R	131	DPVE733	135	KPG10	132	TC716	130
CA615K	131	DPVECUTB04	134	LA500	108	TER250	130
CBHV2	114	DPVECUTD09	134	LA600	122	TER300	130
CHEMSAFE PLUS VV836	116	DPVV733	134	LAT50	120	TERK400	130
CHEMSAFE PLUS WINTER VV837	116	DPVV733EVL	134	NEOCOLOR VE530	119	TERK500 XTREM HEAT	132
CHEMSAFE VV835	116	DPVV736	134	NI015	111	THEMIS W792 ESD	104
COB40	103	DPVV831	134	NI150	113	THRYM VV736	126
CRYOG	133	DS202RP	110	NI155	113	TIG15K	131
CT402	102	DUOCOLOR VE330	123	NI170	113	TOUTRAVO VE509	119
DC103	110	ECONOCUTDM1	94	NI175	113	TOUTRAVO VE510	119
DCTHI	129	EOS FLEX CUT D W922	92	NITREX VE801	121	TOUTRAVO VE511	119
DPCBHV2	135	EOS NOCUT VV910	91	NITREX VE802	120	TP169	103
DPDC103	134	EOS NOCUT WINTER W913	91	NITREX VE803	121	VE440	122
DPFBN49	134	EOS VV900JA	107	NITREX VE830	121	VE630	102
DPLAT50	135	FB149	109	NITREX VE846	121	VE631	102
DPTC715	134	FBF15	129	NYSOS VV904	114	VE702	100
DPV1371	135	FBF50	129	PETRO VE766	117	VE702GR	100
DPVE450	134	FBN49	109	PETRO VE780	117	VE702GREEN	101

VE702P	101	VE730	108	VENICUTD00	94	VENITACTYL V1310	125
VE702PESD	104	VE733	112	VENICUTD01	93	VENITACTYL V1371	125
VE702PG	101	VENICLEAN V1340	125	VENICUTD02	93	VENITACTYL V1400B100	124
VE702PGS	135	VENICUT F XTREM CUT-VECUTF01	91	VENICUTD03	92	VENITACTYL V1400PB100	124
VE702PN	101	VENICUT F XTREM CUT-VECUTF03	90	VENICUTD04	92	VENITACTYL V1450B100	124
VE702PNG12	135	VENICUT F XTREM CUT TOUCH-VECUTF02	90	VENICUTD05	92	VENIZETTE VE920	120
VE712GR	106	VENICUT10	99	VENICUTD07	94	W704	99
VE712GRG10	135	VENICUTB00	97	VENICUTD08	95	W712BC	100
VE713	112	VENICUTB01	97	VENICUTD09	93	W712NO	100
VE715GR	106	VENICUTB02	97	VENICUTD10	95	W722ESD	104
VE722	106	VENICUTB03	98	VENICUTD11	95	VV733GREEN	108
VE723GREEN	105	VENICUTB04	98	VENICUTDX0	94	VV733JAG6	135
VE723NO	105	VENICUTB05	97	VENICUTDX1	93	W736CUT	126
VE724NO	105	VENICUTB06	98	VENICUTF00	91	VV835CUT	116
VE725NO	105	VENICUTBGREEN	98	VENICUTF07	90	VV914 ARC FLASH	133
VE726	111	VENICUTC01	96	VENICUTF08	90	WET & DRY VV636BL	112
VE727	111	VENICUTC02	96	VENIFISH VE990	120	ZEPHIR VE210	123
VE728	127	VENICUTC05	96	VENIPLUS V1500	124	50MAC	102
VE729	111	VENICUTCM1	96	VENIPRO VE450	122	51FEDF	109

Body protection							
AGRA	157	G-DOON	171	M5PA3STR	142	PO109	209
ALASKA3	164	GALWAY	183	M5SA3	143	PO110	210
ALMA	177	GENOA2	156	M5VE3	143	PO115	210
ANZIO	178	GILP2	193	M6BER	154	POLFR2	199
AREN	162	GILP4	193	M6COM	155	RANDERS	167
ARENHV	189	GOTEBORG2	163	M6GIL	155	RANDERS2	167
AREZZO	178	GRAVITY	170	M6PAN	154	REEF	158
ASTRAL	191	HELSINKI2	164	M6SAL	155	RENO HV	189
ATOLL	158	HO600	203	M6VES	155	RENO2	168
AUSTRAL2	197	HOLEN	169	MA400	182	RUBY	179
BADGE	158	HORTEN2	172	MAICA2	200	SHERMAN	174
BALI	156	HORTEN2 LIGHT	172	MAICO2	199	SHERMAN2	174
BALTIC	185	ICEBERG	197	MAIMA2	200	SIERRA2	171
BAUCE2	192	IGLOO2	197	MAIPA2	198	SINGA	157
BEAVER	175	ISOLA2	164	MAIVE2	198	SLIGO	180
BEAVER2	175	JURA	184	MANCHBE	210	SPEED	188
BLOOM	166	KARA	184	MANCHBL	210	SSVFR2	199
BLOUSPE	209	KITVI	209	MAPOC	159	STAR	195
BLOUSPO	209	KODIAK	174	MARMOT	175	STOCKTON2	170
BORGO	178	KOLDYPANTS	177	MARMOTHV	191	STOCKTON3	170
BRAS2	192	KOLDYTOP	177	MCCDZ	145	STRADA 2	188
BRIGHTON2	176	KOMODO2	198	MCCO2	145	SUMGUE	201
CAGFR2	200	KOMODO2HV	198	MCCOM	145	SUMMAN	201
CARSON2	162	KOPER	163	MCPA2	144	SUMPAN	201
CEINT04	159	LAPONIE2	197	MCPA2STR	144	SUMTAB	201
CHAMONIX	185	LAZIO	157	MCSA2	144	SUMVES	201
CO600	203	LECCO	179	MCVE2	145	SURCHPE	211
COMET	196	LEGA	191	METEOR	195	SURCHPLUS	211
COSMOS	196	LENA	184	MILTON2	161	SURCHPO	211
DARWIN3	164	LITE	180	MOGI2	141	SWEFR2	199
DOON	166	LORCA	168	MOONLIGHT2	190	TABALPV	202
DOONHV	190	LULEA2	173	MOOVE	167	TABLIVE	202
DT111	211	M1BE2	152	MOPA2	141	TABNIT	202
DT115	208	M1CO2	153	MOTION	166	TABPO02	209
DT115CV	208	M1GI2	153	MSLPA	151	TABPU	202
DT117	206	M1PA2	152	MYSEN2	173	TARMAC	188
DT119	206	M1SA2	152	MYSEN2F	173	TATRY	161
DT125	207	M1VE2	153	NAGOYA2	174	TATRY2	162
DT215	207	M2BE3	148	NAPOLI	156	TOQUE	210
DT215CV	208	M2BE3STR	148	NEVE	185	TRACK	189
DT216	208	M2CO3	149	NEWDELTA2	168	TURINO	157
DT221	207	M2CZ3	149	NORDIC	185	VERNON	176
DT223	207	M2GEN	159	NORDLAND	197	VERNON2	176
DT250	206	M2GI3	150	NORTHWOOD3	165	VERONA	158
DT300 DELTACHEM	206	M2LPA3	147	NOVA	196	VIGO	163
DT301 DELTACHEM	211	M2PA3	146	OFFSHORE	196	YEMAN	165
DT302 DELTACHEM	211	M2PA3F	147	OLINO	179	ZENITH	191
EASYVIEW	189	M2PA3STR	146	OPTIMUM3	188	ZIMA	159
EOLE2	161	M2PA3STRF	147	ORSA	172	304	182
FAST	190	M2PHV	195	OTAKE	180	305	183
FIDJI HV	192	M2PW3	146	PALIGPA	151	400	182
FIDII3	169	M2SA3	149	PALIGVE	151	850PAN	181
FIDII3HV	192	M2SA3STR	148	PANOSTRPA	154	850VES	181
FINNMARK2	163	M2VE3	150	PHBE2	194	900PAN	181
FLEN	165	M2VHV	195	PHPA2	194	900PANHV	193
FLENHV	190	M5BE3STR	143	PHVE2	194	900VES	181
FREEWAY HV	190	M5PA3	142	PO106	209	900VESHV	193
I INCLARACIT LIA	192	111111111111111111111111111111111111111	142	10100	209	200 V L 21 1 V	193

Foot	protection

AEROBUILD S5 CI FO SR	241	DELTA SPORT S1P SRC	216	JUMPER3 S3 FUR SRC	234	PHYSIOHC OB SRA	244
AEROFOOD S4 CI SR	244	DENALI S1PS SR	227	JUMPER3 S3 SRC	233	PRATO	237
AEROGREEN O4 CI FO SR	246	EIGER S3S SR	227	KEMIS S4 CI SRC	243	RICHMOND S1 SRC	235
AEROTECH S5 CI FO SR	241	ESKIMO SBHP SRC	241	LACET XL	236	RIMINI4 S1P SRC	221
AEROTECH S5 FE CI FO SR	241	FENNEC4 S1 SRC	221	LAUTARET 2	242	ROBION3 S2 SRC	223
ARONA S1P SRC	219	FENNEC4 S1P SRC	221	MAESTRO S3 SRC	231	SAGA2 S3S SR	216
ASTI S1P SRC	218	FISHER2 S5 SRA	245	MANHATTAN S3 SRC	215	SAMY3 S7 SR	226
ATACAMA S3 SRC	230	FREEZE	242	MAUBEC 3 SBEA SRC	223	SANTANA S3 SRC	231
AURIBEAU3 S1P SRC	228	FROST OB SRA	245	MEMPHIS S1P ESD SRC	225	SAULT2 S3 SRC	232
BOSTON S1P SRC	215	GARDEN OB SRA	245	MIAMI S1P CAMO SRC	220	SAULT2 S3 SRC ESD	225
BRISTOL S3 SRC	235	GARGAS II S1P SRC	229	MIAMI S1P SRC	236	SMASH S1P SRC	217
BRONZE2 S5 SRA	240	GOBI S3 SRC	230	MIAMI S1P SRC ESD	225	STONE OB SRA	242
BROOKLYN S3 SRC	215	GOULT II S1P SRC	229	MIAMI S2 SRC	223	SUMMER S1P SRC	235
CADEROUSSE S3 SRC	231	GROUNDHC OB SRA	246	MIWA S3 M SRC	222	TAKU S3 CI SRC	230
CALYPSO S3 SRC	231	GROUNDMC OB SRA	246	MONTBRUN S3 SRC	232	TANGARA2 S1P SRC	221
CHAUSSETT	237	HEALTHIC OB SRA	244	NICKEL S5 CI SRC	240	TW302 S3 SRC	232
CHAUSSON	237	IRON S5 SRC	240	NITRIC SBFO SRC	243	TW402 S3 SRC	232
CINTO S1PS SR	227	JAYA S3S SR	227	NOMAD3 S7S SR	226	VIAGI S1P SRC ESD	225
COBRA4 S3 SRC	222	JET3 S1 SRC	234	ORGANO S4 SRA	243	VIRAGE S1P SRC	218
COMO S1P SRC	235	JET3 S1P SRC	233	OXID O4 CI SRC	243	22180	236
COPPER S5 SRA	240	JET3 S3 SRC	233	OYSTER2 S5 SRA	245	46500	236
D-SPIRIT S1P SRC	217	JUMPER3 S1 SRC	234	PERTUIS3 S1P SRC	228	47600	236
D-SPIRIT S3 SRC	217	JUMPER3 S1P SRC	233	PHOCEA2 S3S SR	228		
D-STAR S1P SRC	217	JUMPER3 S3 FUR HC SRC	234	PHOENIX2 S3S SR	228		

			Fall pro	tection			
AM002	288	ELARA170	265	LO007150CD	287	PROTECTOR TETRA AN15015F	273
AM007	283	ELARA190V2	265	LO030100	282	PROTECTOR TETRA AN15015T	273
AM009	289	ELARA270	264	LO030150	282	PUMA HAR25	255
AM018	288	ELARA280V2	264	LO030200	282	RA005L	297
AM022	289	ELARA320V2	264	LO045200	286	RA038	297
AM023	288	ELARA340HV2	263	LO047100	286	RAH33	296
AM025	288	ELARA350H	263	LO047150	286	RESCUEHUB TC065	296
AM027	289	ELARA380HPF	263	LO047150AD	286	REVOLIN HAR35M	254
AM030	289	ELARA390HV2	263	LO147150	286	SAFECORD TC007	290
AN203100ZZ	268	EX021	262	LO147150CDD	286	SPEEDLINE LV201	285
AN203200ZD	268	EX030200	262	LV100	283	SPIRAL AN208S200AD	267
AN203200ZZ	268	EX030400	262	LV102050	282	SPIRAL AN218S200ADD	267
AN208R2AD	267	EX118	262	LV102100	282	TC001	290
AN213100ZDD	269	EX120	259	LV102150	282	TC002	290
AN213150ZDD	269	EX220	257	LV105	283	TC003	290
AN213200ZDD	269	FENNEC AN06310	280	LV106	283	TC004	291
AN213200ZZZ	268	FENNEC AN06320	280	LV301	285	TC005	291
AN218R2ADD	267	FENNEC AN06330	280	LV400	284	TC008	297
AN235200AD	266	GIRAFE TRG20	293	LV401	284	TC009	292
AN235200PR	266	HA200	260	LV402	284	TC012	290
AN245200ADD	266	HA203FS	260	LV403	284	TC015	291
AN245200PRR	266	HA204	260	LYNX HAR35R	254	TC016	292
AN30010	279	HA205	261	MAXIBLOC AN10006T	271	TC022	296
AN30020	279	HA206	261	MAXIBLOC AN10010T2	271	TC025	292
AN30030	279	HA207	261	MAXIBLOC AN10015T	271	TC028	292
AN401	278	HA208	261	MEDBLOC AN13006C2	271	TC029	292
AN410	278	HAPAD2	260	MICROBLOC AN106	270	TC040	292
AN420	278	HAR11	259	MICROBLOC AN106PF	270	TC044	291
AN430	278	HAR12	259	MINIBLOC AN102	270	TC066	296
AN801	281	HAR12GILNO	258	PROTECTOR ELEVATOR TR01820U	295	TC104	296
AN802	281	HAR14	258	PROTECTOR ELEVATOR TR01830U	295	TC105	296
ANCOV	270	HAR22H	257	PROTECTOR EXTRA LARGE AN19040T2	275	TIVANO HAR32M	254
ASCAB AN024	281	HAR22HA	257	PROTECTOR EXTRA LARGE AN19060T2	275	TRA102	295
ASCAB AN025	281	HAR23H	257	PROTECTOR LARGE AN18020T	274	TRA103	295
ASCAB AN071	281	HAR24H	256	PROTECTOR LARGE AN18030T	274	TRA20	294
ASCORD AN065	279	HAR24HA	256	PROTECTOR LOAD AN517	276	TRA22	294
ASDRISS2 AN068	277	HAR25HA	256	PROTECTOR LOAD AN518	276	TRA30	294
CAMELEON AN066	277	HAR42EL	255	PROTECTOR TETRA AN14006F	272	TRA32	294
CAMELEON AN066A	277	HAR44EL	255	PROTECTOR TETRA AN14006T	272	TRBAG	297
DAYAK LV120G	283	HARVESGI	258	PROTECTOR TETRA AN14008F	272	TRBAG3	297
DESCORD TC006	291	IPN LV130	283	PROTECTOR TETRA AN14008T	272	TRG01	293
ELARA130V2	265	JAGUAR 2 HAR36R	254	PROTECTOR TETRA AN15006F	274	TRG02	293
ELARA140	264	LO005200	287	PROTECTOR TETRA AN15006T	274	TRG03	293
ELARA150	265	LO007100	287	PROTECTOR TETRA AN15010F	273	X-TREM LIGHT HAR22X	256
ELARA160V2	265	LO007150	287	PROTECTOR TETRA AN15010T	273		

Walker Industrial Park - Blackburn - Lancashire - BB1 2JU UNITED KINGDOM 1 +44 1254 686 100 - ♣ +44 1254 686 111 @ enquiries@deltaplus.co.uk

EXPORT

ZAC de La Peyrolière - B.P. 140 84405 APT Cedex - France 1 +33 (0)4 90 74 20 33 - 8 +33 (0)4 90 74 32 59 @ export@deltaplus.fr

BALTIC & SCANDINAVIA

Rozwojowa 21 - 41-103 Siemianowice Śląskie - Poland 1 +48 32 29 64 764 - 4 +48 32 29 64 768 @ sales@deltaplus.com.pl

MIDDLE EAST

P6 42/43 & A2 50/51, SAIF Zone - P.O. Box 121220 - Sharjah - UNITED ARAB EMIRATES $\bf 1$ +971 6 5572285 - +971 6 5575004

@ middle.east@deltaplus.eu

www.deltaplus.eu

Delta Plus Group is listed on NYSE-EURONEXT PARIS, Compartment B (ISIN: FR0013283108 - Mnémo: DLTA).

09/2023 - GB - n°1792 - CATA23GB1792 - Photos : Zbigniew Nadolny - Samuel Dhote - Jérôme Kelagopian - Zebra - Laurent Bagnis (WORLDSKILLS France). DELTA PLUS is Delta Plus Group registered trademark. Delta Plus reserves the right to modify the characteristics and manufacturing of its products without prior notice. This is a non-contractual document subject to printing errors, reproduction is prohibited. Creation by Wondercrush and Easycom

www.deltaplus.eu

enjoy safety.